ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviin Unicode version

Theorem cbviin 3965
Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
cbviun.1  |-  F/_ y B
cbviun.2  |-  F/_ x C
cbviun.3  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbviin  |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
Distinct variable groups:    y, A    x, A
Allowed substitution hints:    B( x, y)    C( x, y)

Proof of Theorem cbviin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5  |-  F/_ y B
21nfcri 2342 . . . 4  |-  F/ y  z  e.  B
3 cbviun.2 . . . . 5  |-  F/_ x C
43nfcri 2342 . . . 4  |-  F/ x  z  e.  C
5 cbviun.3 . . . . 5  |-  ( x  =  y  ->  B  =  C )
65eleq2d 2275 . . . 4  |-  ( x  =  y  ->  (
z  e.  B  <->  z  e.  C ) )
72, 4, 6cbvral 2734 . . 3  |-  ( A. x  e.  A  z  e.  B  <->  A. y  e.  A  z  e.  C )
87abbii 2321 . 2  |-  { z  |  A. x  e.  A  z  e.  B }  =  { z  |  A. y  e.  A  z  e.  C }
9 df-iin 3930 . 2  |-  |^|_ x  e.  A  B  =  { z  |  A. x  e.  A  z  e.  B }
10 df-iin 3930 . 2  |-  |^|_ y  e.  A  C  =  { z  |  A. y  e.  A  z  e.  C }
118, 9, 103eqtr4i 2236 1  |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {cab 2191   F/_wnfc 2335   A.wral 2484   |^|_ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-iin 3930
This theorem is referenced by:  cbviinv  3967
  Copyright terms: Public domain W3C validator