![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ceqsex2v | Unicode version |
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
Ref | Expression |
---|---|
ceqsex2v.1 |
![]() ![]() ![]() ![]() |
ceqsex2v.2 |
![]() ![]() ![]() ![]() |
ceqsex2v.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ceqsex2v.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ceqsex2v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1462 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfv 1462 |
. 2
![]() ![]() ![]() ![]() | |
3 | ceqsex2v.1 |
. 2
![]() ![]() ![]() ![]() | |
4 | ceqsex2v.2 |
. 2
![]() ![]() ![]() ![]() | |
5 | ceqsex2v.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | ceqsex2v.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 1, 2, 3, 4, 5, 6 | ceqsex2 2650 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-v 2614 |
This theorem is referenced by: ceqsex3v 2652 ceqsex4v 2653 |
Copyright terms: Public domain | W3C validator |