Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsex2v | Unicode version |
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
Ref | Expression |
---|---|
ceqsex2v.1 | |
ceqsex2v.2 | |
ceqsex2v.3 | |
ceqsex2v.4 |
Ref | Expression |
---|---|
ceqsex2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 | |
2 | nfv 1508 | . 2 | |
3 | ceqsex2v.1 | . 2 | |
4 | ceqsex2v.2 | . 2 | |
5 | ceqsex2v.3 | . 2 | |
6 | ceqsex2v.4 | . 2 | |
7 | 1, 2, 3, 4, 5, 6 | ceqsex2 2752 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 963 wceq 1335 wex 1472 wcel 2128 cvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-v 2714 |
This theorem is referenced by: ceqsex3v 2754 ceqsex4v 2755 |
Copyright terms: Public domain | W3C validator |