| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ceqsex3v | Unicode version | ||
| Description: Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| ceqsex3v.1 | 
 | 
| ceqsex3v.2 | 
 | 
| ceqsex3v.3 | 
 | 
| ceqsex3v.4 | 
 | 
| ceqsex3v.5 | 
 | 
| ceqsex3v.6 | 
 | 
| Ref | Expression | 
|---|---|
| ceqsex3v | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anass 401 | 
. . . . . 6
 | |
| 2 | 3anass 984 | 
. . . . . . 7
 | |
| 3 | 2 | anbi1i 458 | 
. . . . . 6
 | 
| 4 | df-3an 982 | 
. . . . . . 7
 | |
| 5 | 4 | anbi2i 457 | 
. . . . . 6
 | 
| 6 | 1, 3, 5 | 3bitr4i 212 | 
. . . . 5
 | 
| 7 | 6 | 2exbii 1620 | 
. . . 4
 | 
| 8 | 19.42vv 1926 | 
. . . 4
 | |
| 9 | 7, 8 | bitri 184 | 
. . 3
 | 
| 10 | 9 | exbii 1619 | 
. 2
 | 
| 11 | ceqsex3v.1 | 
. . . 4
 | |
| 12 | ceqsex3v.4 | 
. . . . . 6
 | |
| 13 | 12 | 3anbi3d 1329 | 
. . . . 5
 | 
| 14 | 13 | 2exbidv 1882 | 
. . . 4
 | 
| 15 | 11, 14 | ceqsexv 2802 | 
. . 3
 | 
| 16 | ceqsex3v.2 | 
. . . 4
 | |
| 17 | ceqsex3v.3 | 
. . . 4
 | |
| 18 | ceqsex3v.5 | 
. . . 4
 | |
| 19 | ceqsex3v.6 | 
. . . 4
 | |
| 20 | 16, 17, 18, 19 | ceqsex2v 2805 | 
. . 3
 | 
| 21 | 15, 20 | bitri 184 | 
. 2
 | 
| 22 | 10, 21 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: ceqsex6v 2808 | 
| Copyright terms: Public domain | W3C validator |