| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex3v | Unicode version | ||
| Description: Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.) |
| Ref | Expression |
|---|---|
| ceqsex3v.1 |
|
| ceqsex3v.2 |
|
| ceqsex3v.3 |
|
| ceqsex3v.4 |
|
| ceqsex3v.5 |
|
| ceqsex3v.6 |
|
| Ref | Expression |
|---|---|
| ceqsex3v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 |
. . . . . 6
| |
| 2 | 3anass 985 |
. . . . . . 7
| |
| 3 | 2 | anbi1i 458 |
. . . . . 6
|
| 4 | df-3an 983 |
. . . . . . 7
| |
| 5 | 4 | anbi2i 457 |
. . . . . 6
|
| 6 | 1, 3, 5 | 3bitr4i 212 |
. . . . 5
|
| 7 | 6 | 2exbii 1629 |
. . . 4
|
| 8 | 19.42vv 1935 |
. . . 4
| |
| 9 | 7, 8 | bitri 184 |
. . 3
|
| 10 | 9 | exbii 1628 |
. 2
|
| 11 | ceqsex3v.1 |
. . . 4
| |
| 12 | ceqsex3v.4 |
. . . . . 6
| |
| 13 | 12 | 3anbi3d 1331 |
. . . . 5
|
| 14 | 13 | 2exbidv 1891 |
. . . 4
|
| 15 | 11, 14 | ceqsexv 2811 |
. . 3
|
| 16 | ceqsex3v.2 |
. . . 4
| |
| 17 | ceqsex3v.3 |
. . . 4
| |
| 18 | ceqsex3v.5 |
. . . 4
| |
| 19 | ceqsex3v.6 |
. . . 4
| |
| 20 | 16, 17, 18, 19 | ceqsex2v 2814 |
. . 3
|
| 21 | 15, 20 | bitri 184 |
. 2
|
| 22 | 10, 21 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: ceqsex6v 2817 |
| Copyright terms: Public domain | W3C validator |