| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex2 | Unicode version | ||
| Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
| Ref | Expression |
|---|---|
| ceqsex2.1 |
|
| ceqsex2.2 |
|
| ceqsex2.3 |
|
| ceqsex2.4 |
|
| ceqsex2.5 |
|
| ceqsex2.6 |
|
| Ref | Expression |
|---|---|
| ceqsex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 985 |
. . . . 5
| |
| 2 | 1 | exbii 1629 |
. . . 4
|
| 3 | 19.42v 1931 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | 4 | exbii 1629 |
. 2
|
| 6 | nfv 1552 |
. . . . 5
| |
| 7 | ceqsex2.1 |
. . . . 5
| |
| 8 | 6, 7 | nfan 1589 |
. . . 4
|
| 9 | 8 | nfex 1661 |
. . 3
|
| 10 | ceqsex2.3 |
. . 3
| |
| 11 | ceqsex2.5 |
. . . . 5
| |
| 12 | 11 | anbi2d 464 |
. . . 4
|
| 13 | 12 | exbidv 1849 |
. . 3
|
| 14 | 9, 10, 13 | ceqsex 2815 |
. 2
|
| 15 | ceqsex2.2 |
. . 3
| |
| 16 | ceqsex2.4 |
. . 3
| |
| 17 | ceqsex2.6 |
. . 3
| |
| 18 | 15, 16, 17 | ceqsex 2815 |
. 2
|
| 19 | 5, 14, 18 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: ceqsex2v 2819 |
| Copyright terms: Public domain | W3C validator |