| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex2 | Unicode version | ||
| Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
| Ref | Expression |
|---|---|
| ceqsex2.1 |
|
| ceqsex2.2 |
|
| ceqsex2.3 |
|
| ceqsex2.4 |
|
| ceqsex2.5 |
|
| ceqsex2.6 |
|
| Ref | Expression |
|---|---|
| ceqsex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1006 |
. . . . 5
| |
| 2 | 1 | exbii 1651 |
. . . 4
|
| 3 | 19.42v 1953 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | 4 | exbii 1651 |
. 2
|
| 6 | nfv 1574 |
. . . . 5
| |
| 7 | ceqsex2.1 |
. . . . 5
| |
| 8 | 6, 7 | nfan 1611 |
. . . 4
|
| 9 | 8 | nfex 1683 |
. . 3
|
| 10 | ceqsex2.3 |
. . 3
| |
| 11 | ceqsex2.5 |
. . . . 5
| |
| 12 | 11 | anbi2d 464 |
. . . 4
|
| 13 | 12 | exbidv 1871 |
. . 3
|
| 14 | 9, 10, 13 | ceqsex 2838 |
. 2
|
| 15 | ceqsex2.2 |
. . 3
| |
| 16 | ceqsex2.4 |
. . 3
| |
| 17 | ceqsex2.6 |
. . 3
| |
| 18 | 15, 16, 17 | ceqsex 2838 |
. 2
|
| 19 | 5, 14, 18 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: ceqsex2v 2842 |
| Copyright terms: Public domain | W3C validator |