ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsex2 Unicode version

Theorem ceqsex2 2770
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
Hypotheses
Ref Expression
ceqsex2.1  |-  F/ x ps
ceqsex2.2  |-  F/ y ch
ceqsex2.3  |-  A  e. 
_V
ceqsex2.4  |-  B  e. 
_V
ceqsex2.5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsex2.6  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ceqsex2  |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, y)

Proof of Theorem ceqsex2
StepHypRef Expression
1 3anass 977 . . . . 5  |-  ( ( x  =  A  /\  y  =  B  /\  ph )  <->  ( x  =  A  /\  ( y  =  B  /\  ph ) ) )
21exbii 1598 . . . 4  |-  ( E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  E. y ( x  =  A  /\  ( y  =  B  /\  ph ) ) )
3 19.42v 1899 . . . 4  |-  ( E. y ( x  =  A  /\  ( y  =  B  /\  ph ) )  <->  ( x  =  A  /\  E. y
( y  =  B  /\  ph ) ) )
42, 3bitri 183 . . 3  |-  ( E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ( x  =  A  /\  E. y ( y  =  B  /\  ph )
) )
54exbii 1598 . 2  |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  E. x ( x  =  A  /\  E. y ( y  =  B  /\  ph )
) )
6 nfv 1521 . . . . 5  |-  F/ x  y  =  B
7 ceqsex2.1 . . . . 5  |-  F/ x ps
86, 7nfan 1558 . . . 4  |-  F/ x
( y  =  B  /\  ps )
98nfex 1630 . . 3  |-  F/ x E. y ( y  =  B  /\  ps )
10 ceqsex2.3 . . 3  |-  A  e. 
_V
11 ceqsex2.5 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1211anbi2d 461 . . . 4  |-  ( x  =  A  ->  (
( y  =  B  /\  ph )  <->  ( y  =  B  /\  ps )
) )
1312exbidv 1818 . . 3  |-  ( x  =  A  ->  ( E. y ( y  =  B  /\  ph )  <->  E. y ( y  =  B  /\  ps )
) )
149, 10, 13ceqsex 2768 . 2  |-  ( E. x ( x  =  A  /\  E. y
( y  =  B  /\  ph ) )  <->  E. y ( y  =  B  /\  ps )
)
15 ceqsex2.2 . . 3  |-  F/ y ch
16 ceqsex2.4 . . 3  |-  B  e. 
_V
17 ceqsex2.6 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1815, 16, 17ceqsex 2768 . 2  |-  ( E. y ( y  =  B  /\  ps )  <->  ch )
195, 14, 183bitri 205 1  |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   F/wnf 1453   E.wex 1485    e. wcel 2141   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  ceqsex2v  2771
  Copyright terms: Public domain W3C validator