Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsex2v | GIF version |
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
Ref | Expression |
---|---|
ceqsex2v.1 | ⊢ 𝐴 ∈ V |
ceqsex2v.2 | ⊢ 𝐵 ∈ V |
ceqsex2v.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ceqsex2v.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ceqsex2v | ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑦𝜒 | |
3 | ceqsex2v.1 | . 2 ⊢ 𝐴 ∈ V | |
4 | ceqsex2v.2 | . 2 ⊢ 𝐵 ∈ V | |
5 | ceqsex2v.3 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | ceqsex2v.4 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
7 | 1, 2, 3, 4, 5, 6 | ceqsex2 2766 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: ceqsex3v 2768 ceqsex4v 2769 |
Copyright terms: Public domain | W3C validator |