| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ceqsex2v | GIF version | ||
| Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) | 
| Ref | Expression | 
|---|---|
| ceqsex2v.1 | ⊢ 𝐴 ∈ V | 
| ceqsex2v.2 | ⊢ 𝐵 ∈ V | 
| ceqsex2v.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| ceqsex2v.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| ceqsex2v | ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜒 | |
| 3 | ceqsex2v.1 | . 2 ⊢ 𝐴 ∈ V | |
| 4 | ceqsex2v.2 | . 2 ⊢ 𝐵 ∈ V | |
| 5 | ceqsex2v.3 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | ceqsex2v.4 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 7 | 1, 2, 3, 4, 5, 6 | ceqsex2 2804 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: ceqsex3v 2806 ceqsex4v 2807 | 
| Copyright terms: Public domain | W3C validator |