ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsex2v GIF version

Theorem ceqsex2v 2771
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
Hypotheses
Ref Expression
ceqsex2v.1 𝐴 ∈ V
ceqsex2v.2 𝐵 ∈ V
ceqsex2v.3 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsex2v.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsex2v (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)

Proof of Theorem ceqsex2v
StepHypRef Expression
1 nfv 1521 . 2 𝑥𝜓
2 nfv 1521 . 2 𝑦𝜒
3 ceqsex2v.1 . 2 𝐴 ∈ V
4 ceqsex2v.2 . 2 𝐵 ∈ V
5 ceqsex2v.3 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
6 ceqsex2v.4 . 2 (𝑦 = 𝐵 → (𝜓𝜒))
71, 2, 3, 4, 5, 6ceqsex2 2770 1 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  ceqsex3v  2772  ceqsex4v  2773
  Copyright terms: Public domain W3C validator