| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex4v | Unicode version | ||
| Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
| Ref | Expression |
|---|---|
| ceqsex4v.1 |
|
| ceqsex4v.2 |
|
| ceqsex4v.3 |
|
| ceqsex4v.4 |
|
| ceqsex4v.7 |
|
| ceqsex4v.8 |
|
| ceqsex4v.9 |
|
| ceqsex4v.10 |
|
| Ref | Expression |
|---|---|
| ceqsex4v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42vv 1926 |
. . . 4
| |
| 2 | 3anass 984 |
. . . . . 6
| |
| 3 | df-3an 982 |
. . . . . . 7
| |
| 4 | 3 | anbi2i 457 |
. . . . . 6
|
| 5 | 2, 4 | bitr4i 187 |
. . . . 5
|
| 6 | 5 | 2exbii 1620 |
. . . 4
|
| 7 | df-3an 982 |
. . . 4
| |
| 8 | 1, 6, 7 | 3bitr4i 212 |
. . 3
|
| 9 | 8 | 2exbii 1620 |
. 2
|
| 10 | ceqsex4v.1 |
. . 3
| |
| 11 | ceqsex4v.2 |
. . 3
| |
| 12 | ceqsex4v.7 |
. . . . 5
| |
| 13 | 12 | 3anbi3d 1329 |
. . . 4
|
| 14 | 13 | 2exbidv 1882 |
. . 3
|
| 15 | ceqsex4v.8 |
. . . . 5
| |
| 16 | 15 | 3anbi3d 1329 |
. . . 4
|
| 17 | 16 | 2exbidv 1882 |
. . 3
|
| 18 | 10, 11, 14, 17 | ceqsex2v 2805 |
. 2
|
| 19 | ceqsex4v.3 |
. . 3
| |
| 20 | ceqsex4v.4 |
. . 3
| |
| 21 | ceqsex4v.9 |
. . 3
| |
| 22 | ceqsex4v.10 |
. . 3
| |
| 23 | 19, 20, 21, 22 | ceqsex2v 2805 |
. 2
|
| 24 | 9, 18, 23 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: ceqsex8v 2809 |
| Copyright terms: Public domain | W3C validator |