Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsex4v | Unicode version |
Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
Ref | Expression |
---|---|
ceqsex4v.1 | |
ceqsex4v.2 | |
ceqsex4v.3 | |
ceqsex4v.4 | |
ceqsex4v.7 | |
ceqsex4v.8 | |
ceqsex4v.9 | |
ceqsex4v.10 |
Ref | Expression |
---|---|
ceqsex4v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42vv 1904 | . . . 4 | |
2 | 3anass 977 | . . . . . 6 | |
3 | df-3an 975 | . . . . . . 7 | |
4 | 3 | anbi2i 454 | . . . . . 6 |
5 | 2, 4 | bitr4i 186 | . . . . 5 |
6 | 5 | 2exbii 1599 | . . . 4 |
7 | df-3an 975 | . . . 4 | |
8 | 1, 6, 7 | 3bitr4i 211 | . . 3 |
9 | 8 | 2exbii 1599 | . 2 |
10 | ceqsex4v.1 | . . 3 | |
11 | ceqsex4v.2 | . . 3 | |
12 | ceqsex4v.7 | . . . . 5 | |
13 | 12 | 3anbi3d 1313 | . . . 4 |
14 | 13 | 2exbidv 1861 | . . 3 |
15 | ceqsex4v.8 | . . . . 5 | |
16 | 15 | 3anbi3d 1313 | . . . 4 |
17 | 16 | 2exbidv 1861 | . . 3 |
18 | 10, 11, 14, 17 | ceqsex2v 2771 | . 2 |
19 | ceqsex4v.3 | . . 3 | |
20 | ceqsex4v.4 | . . 3 | |
21 | ceqsex4v.9 | . . 3 | |
22 | ceqsex4v.10 | . . 3 | |
23 | 19, 20, 21, 22 | ceqsex2v 2771 | . 2 |
24 | 9, 18, 23 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wex 1485 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: ceqsex8v 2775 |
Copyright terms: Public domain | W3C validator |