ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexv2d Unicode version

Theorem ceqsexv2d 2813
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.)
Hypotheses
Ref Expression
ceqsexv2d.1  |-  A  e. 
_V
ceqsexv2d.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsexv2d.3  |-  ps
Assertion
Ref Expression
ceqsexv2d  |-  E. x ph
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem ceqsexv2d
StepHypRef Expression
1 ceqsexv2d.1 . . 3  |-  A  e. 
_V
21isseti 2781 . 2  |-  E. x  x  =  A
3 ceqsexv2d.3 . . 3  |-  ps
4 ceqsexv2d.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
53, 4mpbiri 168 . 2  |-  ( x  =  A  ->  ph )
62, 5eximii 1626 1  |-  E. x ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator