ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexv2d Unicode version

Theorem ceqsexv2d 2803
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.)
Hypotheses
Ref Expression
ceqsexv2d.1  |-  A  e. 
_V
ceqsexv2d.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsexv2d.3  |-  ps
Assertion
Ref Expression
ceqsexv2d  |-  E. x ph
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem ceqsexv2d
StepHypRef Expression
1 ceqsexv2d.1 . . 3  |-  A  e. 
_V
21isseti 2771 . 2  |-  E. x  x  =  A
3 ceqsexv2d.3 . . 3  |-  ps
4 ceqsexv2d.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
53, 4mpbiri 168 . 2  |-  ( x  =  A  ->  ph )
62, 5eximii 1616 1  |-  E. x ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator