ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexv2d GIF version

Theorem ceqsexv2d 2803
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.)
Hypotheses
Ref Expression
ceqsexv2d.1 𝐴 ∈ V
ceqsexv2d.2 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsexv2d.3 𝜓
Assertion
Ref Expression
ceqsexv2d 𝑥𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ceqsexv2d
StepHypRef Expression
1 ceqsexv2d.1 . . 3 𝐴 ∈ V
21isseti 2771 . 2 𝑥 𝑥 = 𝐴
3 ceqsexv2d.3 . . 3 𝜓
4 ceqsexv2d.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbiri 168 . 2 (𝑥 = 𝐴𝜑)
62, 5eximii 1616 1 𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator