![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ceqsexv2d | GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) |
Ref | Expression |
---|---|
ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ceqsexv2d.3 | ⊢ 𝜓 |
Ref | Expression |
---|---|
ceqsexv2d | ⊢ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexv2d.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 2768 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
3 | ceqsexv2d.3 | . . 3 ⊢ 𝜓 | |
4 | ceqsexv2d.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbiri 168 | . 2 ⊢ (𝑥 = 𝐴 → 𝜑) |
6 | 2, 5 | eximii 1613 | 1 ⊢ ∃𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |