ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexv Unicode version

Theorem ceqsexv 2661
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
Hypotheses
Ref Expression
ceqsexv.1  |-  A  e. 
_V
ceqsexv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsexv  |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsexv
StepHypRef Expression
1 nfv 1467 . 2  |-  F/ x ps
2 ceqsexv.1 . 2  |-  A  e. 
_V
3 ceqsexv.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3ceqsex 2660 1  |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290   E.wex 1427    e. wcel 1439   _Vcvv 2622
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-v 2624
This theorem is referenced by:  ceqsex3v  2664  gencbvex  2668  sbhypf  2671  euxfr2dc  2803  inuni  3999  eqvinop  4081  onm  4239  uniuni  4288  opeliunxp  4508  elvvv  4516  rexiunxp  4593  imai  4803  coi1  4961  abrexco  5554  opabex3d  5908  opabex3  5909  mapsnen  6584  xpsnen  6593  xpcomco  6598  xpassen  6602
  Copyright terms: Public domain W3C validator