ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel2 Unicode version

Theorem clel2 2910
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel2.1  |-  A  e. 
_V
Assertion
Ref Expression
clel2  |-  ( A  e.  B  <->  A. x
( x  =  A  ->  x  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem clel2
StepHypRef Expression
1 clel2.1 . . 3  |-  A  e. 
_V
2 eleq1 2269 . . 3  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
31, 2ceqsalv 2804 . 2  |-  ( A. x ( x  =  A  ->  x  e.  B )  <->  A  e.  B )
43bicomi 132 1  |-  ( A  e.  B  <->  A. x
( x  =  A  ->  x  e.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2177   _Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by:  snssOLD  3765
  Copyright terms: Public domain W3C validator