ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel2 Unicode version

Theorem clel2 2859
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel2.1  |-  A  e. 
_V
Assertion
Ref Expression
clel2  |-  ( A  e.  B  <->  A. x
( x  =  A  ->  x  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem clel2
StepHypRef Expression
1 clel2.1 . . 3  |-  A  e. 
_V
2 eleq1 2229 . . 3  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
31, 2ceqsalv 2756 . 2  |-  ( A. x ( x  =  A  ->  x  e.  B )  <->  A  e.  B )
43bicomi 131 1  |-  ( A  e.  B  <->  A. x
( x  =  A  ->  x  e.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  snss  3702
  Copyright terms: Public domain W3C validator