ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel3g Unicode version

Theorem clel3g 2898
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.)
Assertion
Ref Expression
clel3g  |-  ( B  e.  V  ->  ( A  e.  B  <->  E. x
( x  =  B  /\  A  e.  x
) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem clel3g
StepHypRef Expression
1 eleq2 2260 . . 3  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
21ceqsexgv 2893 . 2  |-  ( B  e.  V  ->  ( E. x ( x  =  B  /\  A  e.  x )  <->  A  e.  B ) )
32bicomd 141 1  |-  ( B  e.  V  ->  ( A  e.  B  <->  E. x
( x  =  B  /\  A  e.  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  clel3  2899  dfiun2g  3948
  Copyright terms: Public domain W3C validator