ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel3g Unicode version

Theorem clel3g 2846
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.)
Assertion
Ref Expression
clel3g  |-  ( B  e.  V  ->  ( A  e.  B  <->  E. x
( x  =  B  /\  A  e.  x
) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem clel3g
StepHypRef Expression
1 eleq2 2221 . . 3  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
21ceqsexgv 2841 . 2  |-  ( B  e.  V  ->  ( E. x ( x  =  B  /\  A  e.  x )  <->  A  e.  B ) )
32bicomd 140 1  |-  ( B  e.  V  ->  ( A  e.  B  <->  E. x
( x  =  B  /\  A  e.  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714
This theorem is referenced by:  clel3  2847  dfiun2g  3881
  Copyright terms: Public domain W3C validator