| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clel2 | GIF version | ||
| Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| clel2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| clel2 | ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clel2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | eleq1 2272 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | ceqsalv 2810 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ 𝐴 ∈ 𝐵) |
| 4 | 3 | bicomi 132 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1373 = wceq 1375 ∈ wcel 2180 Vcvv 2779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-v 2781 |
| This theorem is referenced by: snssOLD 3773 |
| Copyright terms: Public domain | W3C validator |