ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel2 GIF version

Theorem clel2 2907
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel2.1 𝐴 ∈ V
Assertion
Ref Expression
clel2 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel2
StepHypRef Expression
1 clel2.1 . . 3 𝐴 ∈ V
2 eleq1 2269 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
31, 2ceqsalv 2803 . 2 (∀𝑥(𝑥 = 𝐴𝑥𝐵) ↔ 𝐴𝐵)
43bicomi 132 1 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371   = wceq 1373  wcel 2177  Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by:  snssOLD  3761
  Copyright terms: Public domain W3C validator