Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clel2 | GIF version |
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
clel2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
clel2 | ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | eleq1 2233 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ceqsalv 2760 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ 𝐴 ∈ 𝐵) |
4 | 3 | bicomi 131 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: snss 3709 |
Copyright terms: Public domain | W3C validator |