ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsrex2v Unicode version

Theorem ceqsrex2v 2812
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
Hypotheses
Ref Expression
ceqsrex2v.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsrex2v.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ceqsrex2v  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( E. x  e.  C  E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph ) 
<->  ch ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C    x, D, y    ps, x    ch, y
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x)    C( y)

Proof of Theorem ceqsrex2v
StepHypRef Expression
1 anass 398 . . . . . 6  |-  ( ( ( x  =  A  /\  y  =  B )  /\  ph )  <->  ( x  =  A  /\  ( y  =  B  /\  ph ) ) )
21rexbii 2440 . . . . 5  |-  ( E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph )  <->  E. y  e.  D  ( x  =  A  /\  ( y  =  B  /\  ph ) ) )
3 r19.42v 2586 . . . . 5  |-  ( E. y  e.  D  ( x  =  A  /\  ( y  =  B  /\  ph ) )  <-> 
( x  =  A  /\  E. y  e.  D  ( y  =  B  /\  ph )
) )
42, 3bitri 183 . . . 4  |-  ( E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph )  <->  ( x  =  A  /\  E. y  e.  D  ( y  =  B  /\  ph ) ) )
54rexbii 2440 . . 3  |-  ( E. x  e.  C  E. y  e.  D  (
( x  =  A  /\  y  =  B )  /\  ph )  <->  E. x  e.  C  ( x  =  A  /\  E. y  e.  D  ( y  =  B  /\  ph ) ) )
6 ceqsrex2v.1 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
76anbi2d 459 . . . . 5  |-  ( x  =  A  ->  (
( y  =  B  /\  ph )  <->  ( y  =  B  /\  ps )
) )
87rexbidv 2436 . . . 4  |-  ( x  =  A  ->  ( E. y  e.  D  ( y  =  B  /\  ph )  <->  E. y  e.  D  ( y  =  B  /\  ps )
) )
98ceqsrexv 2810 . . 3  |-  ( A  e.  C  ->  ( E. x  e.  C  ( x  =  A  /\  E. y  e.  D  ( y  =  B  /\  ph ) )  <->  E. y  e.  D  ( y  =  B  /\  ps ) ) )
105, 9syl5bb 191 . 2  |-  ( A  e.  C  ->  ( E. x  e.  C  E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph ) 
<->  E. y  e.  D  ( y  =  B  /\  ps ) ) )
11 ceqsrex2v.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1211ceqsrexv 2810 . 2  |-  ( B  e.  D  ->  ( E. y  e.  D  ( y  =  B  /\  ps )  <->  ch )
)
1310, 12sylan9bb 457 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( E. x  e.  C  E. y  e.  D  ( ( x  =  A  /\  y  =  B )  /\  ph ) 
<->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator