Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsrex2v | Unicode version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.) |
Ref | Expression |
---|---|
ceqsrex2v.1 | |
ceqsrex2v.2 |
Ref | Expression |
---|---|
ceqsrex2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 399 | . . . . . 6 | |
2 | 1 | rexbii 2477 | . . . . 5 |
3 | r19.42v 2627 | . . . . 5 | |
4 | 2, 3 | bitri 183 | . . . 4 |
5 | 4 | rexbii 2477 | . . 3 |
6 | ceqsrex2v.1 | . . . . . 6 | |
7 | 6 | anbi2d 461 | . . . . 5 |
8 | 7 | rexbidv 2471 | . . . 4 |
9 | 8 | ceqsrexv 2860 | . . 3 |
10 | 5, 9 | syl5bb 191 | . 2 |
11 | ceqsrex2v.2 | . . 3 | |
12 | 11 | ceqsrexv 2860 | . 2 |
13 | 10, 12 | sylan9bb 459 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |