ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel3 Unicode version

Theorem clel3 2865
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel3.1  |-  B  e. 
_V
Assertion
Ref Expression
clel3  |-  ( A  e.  B  <->  E. x
( x  =  B  /\  A  e.  x
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem clel3
StepHypRef Expression
1 clel3.1 . 2  |-  B  e. 
_V
2 clel3g 2864 . 2  |-  ( B  e.  _V  ->  ( A  e.  B  <->  E. x
( x  =  B  /\  A  e.  x
) ) )
31, 2ax-mp 5 1  |-  ( A  e.  B  <->  E. x
( x  =  B  /\  A  e.  x
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  unipr  3810
  Copyright terms: Public domain W3C validator