ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel4 Unicode version

Theorem clel4 2909
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel4.1  |-  B  e. 
_V
Assertion
Ref Expression
clel4  |-  ( A  e.  B  <->  A. x
( x  =  B  ->  A  e.  x
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem clel4
StepHypRef Expression
1 clel4.1 . . 3  |-  B  e. 
_V
2 eleq2 2269 . . 3  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
31, 2ceqsalv 2802 . 2  |-  ( A. x ( x  =  B  ->  A  e.  x )  <->  A  e.  B )
43bicomi 132 1  |-  ( A  e.  B  <->  A. x
( x  =  B  ->  A  e.  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  intpr  3917
  Copyright terms: Public domain W3C validator