ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel4 Unicode version

Theorem clel4 2875
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel4.1  |-  B  e. 
_V
Assertion
Ref Expression
clel4  |-  ( A  e.  B  <->  A. x
( x  =  B  ->  A  e.  x
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem clel4
StepHypRef Expression
1 clel4.1 . . 3  |-  B  e. 
_V
2 eleq2 2241 . . 3  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
31, 2ceqsalv 2769 . 2  |-  ( A. x ( x  =  B  ->  A  e.  x )  <->  A  e.  B )
43bicomi 132 1  |-  ( A  e.  B  <->  A. x
( x  =  B  ->  A  e.  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   _Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  intpr  3878
  Copyright terms: Public domain W3C validator