ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel5 Unicode version

Theorem clel5 2909
Description: Alternate definition of class membership: a class  X is an element of another class  A iff there is an element of  A equal to  X. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
clel5  |-  ( X  e.  A  <->  E. x  e.  A  X  =  x )
Distinct variable groups:    x, A    x, X

Proof of Theorem clel5
StepHypRef Expression
1 risset 2533 . 2  |-  ( X  e.  A  <->  E. x  e.  A  x  =  X )
2 eqcom 2206 . . 3  |-  ( x  =  X  <->  X  =  x )
32rexbii 2512 . 2  |-  ( E. x  e.  A  x  =  X  <->  E. x  e.  A  X  =  x )
41, 3bitri 184 1  |-  ( X  e.  A  <->  E. x  e.  A  X  =  x )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1372    e. wcel 2175   E.wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-cleq 2197  df-clel 2200  df-rex 2489
This theorem is referenced by:  wrdlen1  11029  phisum  12534
  Copyright terms: Public domain W3C validator