ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel5 Unicode version

Theorem clel5 2862
Description: Alternate definition of class membership: a class  X is an element of another class  A iff there is an element of  A equal to  X. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
clel5  |-  ( X  e.  A  <->  E. x  e.  A  X  =  x )
Distinct variable groups:    x, A    x, X

Proof of Theorem clel5
StepHypRef Expression
1 risset 2493 . 2  |-  ( X  e.  A  <->  E. x  e.  A  x  =  X )
2 eqcom 2167 . . 3  |-  ( x  =  X  <->  X  =  x )
32rexbii 2472 . 2  |-  ( E. x  e.  A  x  =  X  <->  E. x  e.  A  X  =  x )
41, 3bitri 183 1  |-  ( X  e.  A  <->  E. x  e.  A  X  =  x )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-cleq 2158  df-clel 2161  df-rex 2449
This theorem is referenced by:  phisum  12168
  Copyright terms: Public domain W3C validator