Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clel5 | Unicode version |
Description: Alternate definition of class membership: a class is an element of another class iff there is an element of equal to . (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.) |
Ref | Expression |
---|---|
clel5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2493 | . 2 | |
2 | eqcom 2167 | . . 3 | |
3 | 2 | rexbii 2472 | . 2 |
4 | 1, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wcel 2136 wrex 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-cleq 2158 df-clel 2161 df-rex 2449 |
This theorem is referenced by: phisum 12168 |
Copyright terms: Public domain | W3C validator |