ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phisum Unicode version

Theorem phisum 12409
Description: The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
phisum  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( phi `  d
)  =  N )
Distinct variable group:    x, N, d

Proof of Theorem phisum
Dummy variables  z  y  w  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4036 . . . . . 6  |-  ( x  =  y  ->  (
x  ||  N  <->  y  ||  N ) )
21elrab 2920 . . . . 5  |-  ( y  e.  { x  e.  NN  |  x  ||  N }  <->  ( y  e.  NN  /\  y  ||  N ) )
3 hashgcdeq 12408 . . . . . . 7  |-  ( ( N  e.  NN  /\  y  e.  NN )  ->  ( `  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y } )  =  if ( y  ||  N ,  ( phi `  ( N  /  y
) ) ,  0 ) )
43adantrr 479 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  y  ||  N ) )  ->  ( `  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  if ( y 
||  N ,  ( phi `  ( N  /  y ) ) ,  0 ) )
5 iftrue 3566 . . . . . . 7  |-  ( y 
||  N  ->  if ( y  ||  N ,  ( phi `  ( N  /  y
) ) ,  0 )  =  ( phi `  ( N  /  y
) ) )
65ad2antll 491 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  y  ||  N ) )  ->  if (
y  ||  N , 
( phi `  ( N  /  y ) ) ,  0 )  =  ( phi `  ( N  /  y ) ) )
74, 6eqtrd 2229 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  y  ||  N ) )  ->  ( `  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  ( phi `  ( N  /  y
) ) )
82, 7sylan2b 287 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( `  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } )  =  ( phi `  ( N  /  y
) ) )
98sumeq2dv 11533 . . 3  |-  ( N  e.  NN  ->  sum_ y  e.  { x  e.  NN  |  x  ||  N } 
( `  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y } )  =  sum_ y  e.  { x  e.  NN  |  x  ||  N }  ( phi `  ( N  /  y
) ) )
10 dvdsfi 12407 . . . 4  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
11 0z 9337 . . . . . . 7  |-  0  e.  ZZ
12 nnz 9345 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  ZZ )
13 fzofig 10524 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0..^ N )  e.  Fin )
1411, 12, 13sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
0..^ N )  e. 
Fin )
1514adantr 276 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  (
0..^ N )  e. 
Fin )
16 ssrab2 3268 . . . . . 6  |-  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  C_  (
0..^ N )
1716a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  C_  (
0..^ N ) )
18 elfzoelz 10222 . . . . . . . . . . 11  |-  ( j  e.  ( 0..^ N )  ->  j  e.  ZZ )
1918adantl 277 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  j  e.  ZZ )
2012ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  N  e.  ZZ )
2119, 20gcdcld 12135 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  ( j  gcd  N )  e.  NN0 )
2221nn0zd 9446 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  ( j  gcd  N )  e.  ZZ )
23 elrabi 2917 . . . . . . . . . 10  |-  ( y  e.  { x  e.  NN  |  x  ||  N }  ->  y  e.  NN )
2423ad2antlr 489 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  y  e.  NN )
2524nnzd 9447 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  y  e.  ZZ )
26 zdceq 9401 . . . . . . . 8  |-  ( ( ( j  gcd  N
)  e.  ZZ  /\  y  e.  ZZ )  -> DECID  ( j  gcd  N )  =  y )
2722, 25, 26syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  -> DECID  ( j  gcd  N
)  =  y )
28 oveq1 5929 . . . . . . . . . . . 12  |-  ( z  =  j  ->  (
z  gcd  N )  =  ( j  gcd 
N ) )
2928eqeq1d 2205 . . . . . . . . . . 11  |-  ( z  =  j  ->  (
( z  gcd  N
)  =  y  <->  ( j  gcd  N )  =  y ) )
3029elrab 2920 . . . . . . . . . 10  |-  ( j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y }  <->  ( j  e.  ( 0..^ N )  /\  ( j  gcd 
N )  =  y ) )
3130baibr 921 . . . . . . . . 9  |-  ( j  e.  ( 0..^ N )  ->  ( (
j  gcd  N )  =  y  <->  j  e.  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } ) )
3231dcbid 839 . . . . . . . 8  |-  ( j  e.  ( 0..^ N )  ->  (DECID  ( j  gcd  N )  =  y  <-> DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } ) )
3332adantl 277 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  (DECID  ( j  gcd  N )  =  y  <-> DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } ) )
3427, 33mpbid 147 . . . . . 6  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  -> DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )
3534ralrimiva 2570 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  A. j  e.  ( 0..^ N )DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y } )
36 ssfidc 6998 . . . . 5  |-  ( ( ( 0..^ N )  e.  Fin  /\  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  C_  ( 0..^ N )  /\  A. j  e.  ( 0..^ N )DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  ->  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  e.  Fin )
3715, 17, 35, 36syl3anc 1249 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  e.  Fin )
38 oveq1 5929 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  gcd  N )  =  ( w  gcd  N ) )
3938eqeq1d 2205 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  gcd  N
)  =  y  <->  ( w  gcd  N )  =  y ) )
4039elrab 2920 . . . . . . . 8  |-  ( w  e.  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y }  <->  ( w  e.  ( 0..^ N )  /\  ( w  gcd  N )  =  y ) )
4140simprbi 275 . . . . . . 7  |-  ( w  e.  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y }  ->  ( w  gcd  N )  =  y )
4241rgen 2550 . . . . . 6  |-  A. w  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  ( w  gcd  N
)  =  y
4342rgenw 2552 . . . . 5  |-  A. y  e.  { x  e.  NN  |  x  ||  N } A. w  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  ( w  gcd  N )  =  y
44 invdisj 4027 . . . . 5  |-  ( A. y  e.  { x  e.  NN  |  x  ||  N } A. w  e. 
{ z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  ( w  gcd  N
)  =  y  -> Disj  y  e.  { x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y } )
4543, 44mp1i 10 . . . 4  |-  ( N  e.  NN  -> Disj  y  e. 
{ x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } )
4610, 37, 45hashiun 11643 . . 3  |-  ( N  e.  NN  ->  ( ` 
U_ y  e.  {
x  e.  NN  |  x  ||  N }  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  sum_ y  e.  {
x  e.  NN  |  x  ||  N }  ( `  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } ) )
47 fveq2 5558 . . . 4  |-  ( d  =  ( N  / 
y )  ->  ( phi `  d )  =  ( phi `  ( N  /  y ) ) )
48 eqid 2196 . . . . 5  |-  { x  e.  NN  |  x  ||  N }  =  {
x  e.  NN  |  x  ||  N }
49 eqid 2196 . . . . 5  |-  ( z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) )  =  ( z  e. 
{ x  e.  NN  |  x  ||  N }  |->  ( N  /  z
) )
5048, 49dvdsflip 12016 . . . 4  |-  ( N  e.  NN  ->  (
z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) : { x  e.  NN  |  x  ||  N } -1-1-onto-> { x  e.  NN  |  x  ||  N }
)
51 oveq2 5930 . . . . 5  |-  ( z  =  y  ->  ( N  /  z )  =  ( N  /  y
) )
52 simpr 110 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  y  e.  { x  e.  NN  |  x  ||  N }
)
5312adantr 276 . . . . . 6  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  N  e.  ZZ )
5423adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  y  e.  NN )
55 znq 9698 . . . . . 6  |-  ( ( N  e.  ZZ  /\  y  e.  NN )  ->  ( N  /  y
)  e.  QQ )
5653, 54, 55syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  y )  e.  QQ )
5749, 51, 52, 56fvmptd3 5655 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  (
( z  e.  {
x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) `  y )  =  ( N  / 
y ) )
58 elrabi 2917 . . . . . . 7  |-  ( d  e.  { x  e.  NN  |  x  ||  N }  ->  d  e.  NN )
5958adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  d  e.  NN )
6059phicld 12386 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  ( phi `  d )  e.  NN )
6160nncnd 9004 . . . 4  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  ( phi `  d )  e.  CC )
6247, 10, 50, 57, 61fsumf1o 11555 . . 3  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( phi `  d
)  =  sum_ y  e.  { x  e.  NN  |  x  ||  N } 
( phi `  ( N  /  y ) ) )
639, 46, 623eqtr4rd 2240 . 2  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( phi `  d
)  =  ( `  U_ y  e.  { x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } ) )
64 iunrab 3964 . . . . 5  |-  U_ y  e.  { x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  =  { z  e.  ( 0..^ N )  |  E. y  e. 
{ x  e.  NN  |  x  ||  N } 
( z  gcd  N
)  =  y }
65 breq1 4036 . . . . . . . . 9  |-  ( x  =  ( z  gcd 
N )  ->  (
x  ||  N  <->  ( z  gcd  N )  ||  N
) )
66 elfzoelz 10222 . . . . . . . . . . 11  |-  ( z  e.  ( 0..^ N )  ->  z  e.  ZZ )
6766adantl 277 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
z  e.  ZZ )
6812adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  ->  N  e.  ZZ )
69 nnne0 9018 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  =/=  0 )
7069neneqd 2388 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  -.  N  =  0 )
7170intnand 932 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  -.  ( z  =  0  /\  N  =  0 ) )
7271adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  ->  -.  ( z  =  0  /\  N  =  0 ) )
73 gcdn0cl 12129 . . . . . . . . . 10  |-  ( ( ( z  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( z  =  0  /\  N  =  0 ) )  ->  ( z  gcd 
N )  e.  NN )
7467, 68, 72, 73syl21anc 1248 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
( z  gcd  N
)  e.  NN )
75 gcddvds 12130 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( z  gcd 
N )  ||  z  /\  ( z  gcd  N
)  ||  N )
)
7667, 68, 75syl2anc 411 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
( ( z  gcd 
N )  ||  z  /\  ( z  gcd  N
)  ||  N )
)
7776simprd 114 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
( z  gcd  N
)  ||  N )
7865, 74, 77elrabd 2922 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
( z  gcd  N
)  e.  { x  e.  NN  |  x  ||  N } )
79 clel5 2901 . . . . . . . 8  |-  ( ( z  gcd  N )  e.  { x  e.  NN  |  x  ||  N }  <->  E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y )
8078, 79sylib 122 . . . . . . 7  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  ->  E. y  e.  { x  e.  NN  |  x  ||  N }  ( z  gcd  N )  =  y )
8180ralrimiva 2570 . . . . . 6  |-  ( N  e.  NN  ->  A. z  e.  ( 0..^ N ) E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y )
82 rabid2 2674 . . . . . 6  |-  ( ( 0..^ N )  =  { z  e.  ( 0..^ N )  |  E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y }  <->  A. z  e.  ( 0..^ N ) E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y )
8381, 82sylibr 134 . . . . 5  |-  ( N  e.  NN  ->  (
0..^ N )  =  { z  e.  ( 0..^ N )  |  E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y } )
8464, 83eqtr4id 2248 . . . 4  |-  ( N  e.  NN  ->  U_ y  e.  { x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  =  ( 0..^ N ) )
8584fveq2d 5562 . . 3  |-  ( N  e.  NN  ->  ( ` 
U_ y  e.  {
x  e.  NN  |  x  ||  N }  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  ( `  (
0..^ N ) ) )
86 nnnn0 9256 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
87 hashfzo0 10915 . . . 4  |-  ( N  e.  NN0  ->  ( `  (
0..^ N ) )  =  N )
8886, 87syl 14 . . 3  |-  ( N  e.  NN  ->  ( `  ( 0..^ N ) )  =  N )
8985, 88eqtrd 2229 . 2  |-  ( N  e.  NN  ->  ( ` 
U_ y  e.  {
x  e.  NN  |  x  ||  N }  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  N )
9063, 89eqtrd 2229 1  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( phi `  d
)  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479    C_ wss 3157   ifcif 3561   U_ciun 3916  Disj wdisj 4010   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   Fincfn 6799   0cc0 7879    / cdiv 8699   NNcn 8990   NN0cn0 9249   ZZcz 9326   QQcq 9693  ..^cfzo 10217  ♯chash 10867   sum_csu 11518    || cdvds 11952    gcd cgcd 12120   phicphi 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-dvds 11953  df-gcd 12121  df-phi 12379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator