ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phisum Unicode version

Theorem phisum 12378
Description: The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
phisum  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( phi `  d
)  =  N )
Distinct variable group:    x, N, d

Proof of Theorem phisum
Dummy variables  z  y  w  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4032 . . . . . 6  |-  ( x  =  y  ->  (
x  ||  N  <->  y  ||  N ) )
21elrab 2916 . . . . 5  |-  ( y  e.  { x  e.  NN  |  x  ||  N }  <->  ( y  e.  NN  /\  y  ||  N ) )
3 hashgcdeq 12377 . . . . . . 7  |-  ( ( N  e.  NN  /\  y  e.  NN )  ->  ( `  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y } )  =  if ( y  ||  N ,  ( phi `  ( N  /  y
) ) ,  0 ) )
43adantrr 479 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  y  ||  N ) )  ->  ( `  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  if ( y 
||  N ,  ( phi `  ( N  /  y ) ) ,  0 ) )
5 iftrue 3562 . . . . . . 7  |-  ( y 
||  N  ->  if ( y  ||  N ,  ( phi `  ( N  /  y
) ) ,  0 )  =  ( phi `  ( N  /  y
) ) )
65ad2antll 491 . . . . . 6  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  y  ||  N ) )  ->  if (
y  ||  N , 
( phi `  ( N  /  y ) ) ,  0 )  =  ( phi `  ( N  /  y ) ) )
74, 6eqtrd 2226 . . . . 5  |-  ( ( N  e.  NN  /\  ( y  e.  NN  /\  y  ||  N ) )  ->  ( `  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  ( phi `  ( N  /  y
) ) )
82, 7sylan2b 287 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( `  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } )  =  ( phi `  ( N  /  y
) ) )
98sumeq2dv 11511 . . 3  |-  ( N  e.  NN  ->  sum_ y  e.  { x  e.  NN  |  x  ||  N } 
( `  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y } )  =  sum_ y  e.  { x  e.  NN  |  x  ||  N }  ( phi `  ( N  /  y
) ) )
10 1zzd 9344 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  ZZ )
11 nnz 9336 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
1210, 11fzfigd 10502 . . . . 5  |-  ( N  e.  NN  ->  (
1 ... N )  e. 
Fin )
13 dvdsssfz1 11994 . . . . 5  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N ) )
14 elfznn 10120 . . . . . . . 8  |-  ( j  e.  ( 1 ... N )  ->  j  e.  NN )
15 dvdsdc 11941 . . . . . . . 8  |-  ( ( j  e.  NN  /\  N  e.  ZZ )  -> DECID  j 
||  N )
1614, 11, 15syl2anr 290 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... N ) )  -> DECID 
j  ||  N )
17 ibar 301 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  (
j  ||  N  <->  ( j  e.  NN  /\  j  ||  N ) ) )
1814, 17syl 14 . . . . . . . . . 10  |-  ( j  e.  ( 1 ... N )  ->  (
j  ||  N  <->  ( j  e.  NN  /\  j  ||  N ) ) )
19 breq1 4032 . . . . . . . . . . 11  |-  ( x  =  j  ->  (
x  ||  N  <->  j  ||  N ) )
2019elrab 2916 . . . . . . . . . 10  |-  ( j  e.  { x  e.  NN  |  x  ||  N }  <->  ( j  e.  NN  /\  j  ||  N ) )
2118, 20bitr4di 198 . . . . . . . . 9  |-  ( j  e.  ( 1 ... N )  ->  (
j  ||  N  <->  j  e.  { x  e.  NN  |  x  ||  N } ) )
2221dcbid 839 . . . . . . . 8  |-  ( j  e.  ( 1 ... N )  ->  (DECID  j  ||  N  <-> DECID  j  e.  { x  e.  NN  |  x  ||  N } ) )
2322adantl 277 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... N ) )  ->  (DECID  j  ||  N  <-> DECID  j  e.  { x  e.  NN  |  x  ||  N } ) )
2416, 23mpbid 147 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 1 ... N ) )  -> DECID 
j  e.  { x  e.  NN  |  x  ||  N } )
2524ralrimiva 2567 . . . . 5  |-  ( N  e.  NN  ->  A. j  e.  ( 1 ... N
)DECID  j  e.  { x  e.  NN  |  x  ||  N } )
26 ssfidc 6991 . . . . 5  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
)  /\  A. j  e.  ( 1 ... N
)DECID  j  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
2712, 13, 25, 26syl3anc 1249 . . . 4  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
28 0z 9328 . . . . . . 7  |-  0  e.  ZZ
29 fzofig 10503 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0..^ N )  e.  Fin )
3028, 11, 29sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
0..^ N )  e. 
Fin )
3130adantr 276 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  (
0..^ N )  e. 
Fin )
32 ssrab2 3264 . . . . . 6  |-  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  C_  (
0..^ N )
3332a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  C_  (
0..^ N ) )
34 elfzoelz 10213 . . . . . . . . . . 11  |-  ( j  e.  ( 0..^ N )  ->  j  e.  ZZ )
3534adantl 277 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  j  e.  ZZ )
3611ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  N  e.  ZZ )
3735, 36gcdcld 12105 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  ( j  gcd  N )  e.  NN0 )
3837nn0zd 9437 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  ( j  gcd  N )  e.  ZZ )
39 elrabi 2913 . . . . . . . . . 10  |-  ( y  e.  { x  e.  NN  |  x  ||  N }  ->  y  e.  NN )
4039ad2antlr 489 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  y  e.  NN )
4140nnzd 9438 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  y  e.  ZZ )
42 zdceq 9392 . . . . . . . 8  |-  ( ( ( j  gcd  N
)  e.  ZZ  /\  y  e.  ZZ )  -> DECID  ( j  gcd  N )  =  y )
4338, 41, 42syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  -> DECID  ( j  gcd  N
)  =  y )
44 ibar 301 . . . . . . . . . 10  |-  ( j  e.  ( 0..^ N )  ->  ( (
j  gcd  N )  =  y  <->  ( j  e.  ( 0..^ N )  /\  ( j  gcd 
N )  =  y ) ) )
45 oveq1 5925 . . . . . . . . . . . 12  |-  ( z  =  j  ->  (
z  gcd  N )  =  ( j  gcd 
N ) )
4645eqeq1d 2202 . . . . . . . . . . 11  |-  ( z  =  j  ->  (
( z  gcd  N
)  =  y  <->  ( j  gcd  N )  =  y ) )
4746elrab 2916 . . . . . . . . . 10  |-  ( j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y }  <->  ( j  e.  ( 0..^ N )  /\  ( j  gcd 
N )  =  y ) )
4844, 47bitr4di 198 . . . . . . . . 9  |-  ( j  e.  ( 0..^ N )  ->  ( (
j  gcd  N )  =  y  <->  j  e.  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } ) )
4948dcbid 839 . . . . . . . 8  |-  ( j  e.  ( 0..^ N )  ->  (DECID  ( j  gcd  N )  =  y  <-> DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } ) )
5049adantl 277 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  ->  (DECID  ( j  gcd  N )  =  y  <-> DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } ) )
5143, 50mpbid 147 . . . . . 6  |-  ( ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  /\  j  e.  ( 0..^ N ) )  -> DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )
5251ralrimiva 2567 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  A. j  e.  ( 0..^ N )DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y } )
53 ssfidc 6991 . . . . 5  |-  ( ( ( 0..^ N )  e.  Fin  /\  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  C_  ( 0..^ N )  /\  A. j  e.  ( 0..^ N )DECID  j  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  ->  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  e.  Fin )
5431, 33, 52, 53syl3anc 1249 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  e.  Fin )
55 oveq1 5925 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  gcd  N )  =  ( w  gcd  N ) )
5655eqeq1d 2202 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  gcd  N
)  =  y  <->  ( w  gcd  N )  =  y ) )
5756elrab 2916 . . . . . . . 8  |-  ( w  e.  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y }  <->  ( w  e.  ( 0..^ N )  /\  ( w  gcd  N )  =  y ) )
5857simprbi 275 . . . . . . 7  |-  ( w  e.  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y }  ->  ( w  gcd  N )  =  y )
5958rgen 2547 . . . . . 6  |-  A. w  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  ( w  gcd  N
)  =  y
6059rgenw 2549 . . . . 5  |-  A. y  e.  { x  e.  NN  |  x  ||  N } A. w  e.  { z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y }  ( w  gcd  N )  =  y
61 invdisj 4023 . . . . 5  |-  ( A. y  e.  { x  e.  NN  |  x  ||  N } A. w  e. 
{ z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  ( w  gcd  N
)  =  y  -> Disj  y  e.  { x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd 
N )  =  y } )
6260, 61mp1i 10 . . . 4  |-  ( N  e.  NN  -> Disj  y  e. 
{ x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } )
6327, 54, 62hashiun 11621 . . 3  |-  ( N  e.  NN  ->  ( ` 
U_ y  e.  {
x  e.  NN  |  x  ||  N }  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  sum_ y  e.  {
x  e.  NN  |  x  ||  N }  ( `  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } ) )
64 fveq2 5554 . . . 4  |-  ( d  =  ( N  / 
y )  ->  ( phi `  d )  =  ( phi `  ( N  /  y ) ) )
65 eqid 2193 . . . . 5  |-  { x  e.  NN  |  x  ||  N }  =  {
x  e.  NN  |  x  ||  N }
66 eqid 2193 . . . . 5  |-  ( z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) )  =  ( z  e. 
{ x  e.  NN  |  x  ||  N }  |->  ( N  /  z
) )
6765, 66dvdsflip 11993 . . . 4  |-  ( N  e.  NN  ->  (
z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) : { x  e.  NN  |  x  ||  N } -1-1-onto-> { x  e.  NN  |  x  ||  N }
)
68 oveq2 5926 . . . . 5  |-  ( z  =  y  ->  ( N  /  z )  =  ( N  /  y
) )
69 simpr 110 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  y  e.  { x  e.  NN  |  x  ||  N }
)
7011adantr 276 . . . . . 6  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  N  e.  ZZ )
7139adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  y  e.  NN )
72 znq 9689 . . . . . 6  |-  ( ( N  e.  ZZ  /\  y  e.  NN )  ->  ( N  /  y
)  e.  QQ )
7370, 71, 72syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  y )  e.  QQ )
7466, 68, 69, 73fvmptd3 5651 . . . 4  |-  ( ( N  e.  NN  /\  y  e.  { x  e.  NN  |  x  ||  N } )  ->  (
( z  e.  {
x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) `  y )  =  ( N  / 
y ) )
75 elrabi 2913 . . . . . . 7  |-  ( d  e.  { x  e.  NN  |  x  ||  N }  ->  d  e.  NN )
7675adantl 277 . . . . . 6  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  d  e.  NN )
7776phicld 12356 . . . . 5  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  ( phi `  d )  e.  NN )
7877nncnd 8996 . . . 4  |-  ( ( N  e.  NN  /\  d  e.  { x  e.  NN  |  x  ||  N } )  ->  ( phi `  d )  e.  CC )
7964, 27, 67, 74, 78fsumf1o 11533 . . 3  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( phi `  d
)  =  sum_ y  e.  { x  e.  NN  |  x  ||  N } 
( phi `  ( N  /  y ) ) )
809, 63, 793eqtr4rd 2237 . 2  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( phi `  d
)  =  ( `  U_ y  e.  { x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y } ) )
81 iunrab 3960 . . . . 5  |-  U_ y  e.  { x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  =  { z  e.  ( 0..^ N )  |  E. y  e. 
{ x  e.  NN  |  x  ||  N } 
( z  gcd  N
)  =  y }
82 breq1 4032 . . . . . . . . 9  |-  ( x  =  ( z  gcd 
N )  ->  (
x  ||  N  <->  ( z  gcd  N )  ||  N
) )
83 elfzoelz 10213 . . . . . . . . . . 11  |-  ( z  e.  ( 0..^ N )  ->  z  e.  ZZ )
8483adantl 277 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
z  e.  ZZ )
8511adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  ->  N  e.  ZZ )
86 nnne0 9010 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  =/=  0 )
8786neneqd 2385 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  -.  N  =  0 )
8887intnand 932 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  -.  ( z  =  0  /\  N  =  0 ) )
8988adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  ->  -.  ( z  =  0  /\  N  =  0 ) )
90 gcdn0cl 12099 . . . . . . . . . 10  |-  ( ( ( z  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( z  =  0  /\  N  =  0 ) )  ->  ( z  gcd 
N )  e.  NN )
9184, 85, 89, 90syl21anc 1248 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
( z  gcd  N
)  e.  NN )
92 gcddvds 12100 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( z  gcd 
N )  ||  z  /\  ( z  gcd  N
)  ||  N )
)
9384, 85, 92syl2anc 411 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
( ( z  gcd 
N )  ||  z  /\  ( z  gcd  N
)  ||  N )
)
9493simprd 114 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
( z  gcd  N
)  ||  N )
9582, 91, 94elrabd 2918 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  -> 
( z  gcd  N
)  e.  { x  e.  NN  |  x  ||  N } )
96 clel5 2897 . . . . . . . 8  |-  ( ( z  gcd  N )  e.  { x  e.  NN  |  x  ||  N }  <->  E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y )
9795, 96sylib 122 . . . . . . 7  |-  ( ( N  e.  NN  /\  z  e.  ( 0..^ N ) )  ->  E. y  e.  { x  e.  NN  |  x  ||  N }  ( z  gcd  N )  =  y )
9897ralrimiva 2567 . . . . . 6  |-  ( N  e.  NN  ->  A. z  e.  ( 0..^ N ) E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y )
99 rabid2 2671 . . . . . 6  |-  ( ( 0..^ N )  =  { z  e.  ( 0..^ N )  |  E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y }  <->  A. z  e.  ( 0..^ N ) E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y )
10098, 99sylibr 134 . . . . 5  |-  ( N  e.  NN  ->  (
0..^ N )  =  { z  e.  ( 0..^ N )  |  E. y  e.  {
x  e.  NN  |  x  ||  N }  (
z  gcd  N )  =  y } )
10181, 100eqtr4id 2245 . . . 4  |-  ( N  e.  NN  ->  U_ y  e.  { x  e.  NN  |  x  ||  N }  { z  e.  ( 0..^ N )  |  ( z  gcd  N
)  =  y }  =  ( 0..^ N ) )
102101fveq2d 5558 . . 3  |-  ( N  e.  NN  ->  ( ` 
U_ y  e.  {
x  e.  NN  |  x  ||  N }  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  ( `  (
0..^ N ) ) )
103 nnnn0 9247 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
104 hashfzo0 10894 . . . 4  |-  ( N  e.  NN0  ->  ( `  (
0..^ N ) )  =  N )
105103, 104syl 14 . . 3  |-  ( N  e.  NN  ->  ( `  ( 0..^ N ) )  =  N )
106102, 105eqtrd 2226 . 2  |-  ( N  e.  NN  ->  ( ` 
U_ y  e.  {
x  e.  NN  |  x  ||  N }  {
z  e.  ( 0..^ N )  |  ( z  gcd  N )  =  y } )  =  N )
10780, 106eqtrd 2226 1  |-  ( N  e.  NN  ->  sum_ d  e.  { x  e.  NN  |  x  ||  N } 
( phi `  d
)  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3153   ifcif 3557   U_ciun 3912  Disj wdisj 4006   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   Fincfn 6794   0cc0 7872   1c1 7873    / cdiv 8691   NNcn 8982   NN0cn0 9240   ZZcz 9317   QQcq 9684   ...cfz 10074  ..^cfzo 10208  ♯chash 10846   sum_csu 11496    || cdvds 11930    gcd cgcd 12079   phicphi 12347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-dvds 11931  df-gcd 12080  df-phi 12349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator