| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clel5 | GIF version | ||
| Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.) |
| Ref | Expression |
|---|---|
| clel5 | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset 2525 | . 2 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑋) | |
| 2 | eqcom 2198 | . . 3 ⊢ (𝑥 = 𝑋 ↔ 𝑋 = 𝑥) | |
| 3 | 2 | rexbii 2504 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-cleq 2189 df-clel 2192 df-rex 2481 |
| This theorem is referenced by: wrdlen1 10972 phisum 12409 |
| Copyright terms: Public domain | W3C validator |