ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel5 GIF version

Theorem clel5 2863
Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
clel5 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem clel5
StepHypRef Expression
1 risset 2494 . 2 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑋)
2 eqcom 2167 . . 3 (𝑥 = 𝑋𝑋 = 𝑥)
32rexbii 2473 . 2 (∃𝑥𝐴 𝑥 = 𝑋 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
41, 3bitri 183 1 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wcel 2136  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-cleq 2158  df-clel 2161  df-rex 2450
This theorem is referenced by:  phisum  12172
  Copyright terms: Public domain W3C validator