ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel5 GIF version

Theorem clel5 2901
Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) (Revised by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
clel5 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem clel5
StepHypRef Expression
1 risset 2525 . 2 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑋)
2 eqcom 2198 . . 3 (𝑥 = 𝑋𝑋 = 𝑥)
32rexbii 2504 . 2 (∃𝑥𝐴 𝑥 = 𝑋 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
41, 3bitri 184 1 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-cleq 2189  df-clel 2192  df-rex 2481
This theorem is referenced by:  wrdlen1  10972  phisum  12409
  Copyright terms: Public domain W3C validator