| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcan | Unicode version | ||
| Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
| Ref | Expression |
|---|---|
| dcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | dcand 934 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: dcan2 936 dcbi 938 annimdc 939 pm4.55dc 940 orandc 941 anordc 958 xordidc 1410 gcdmndc 12122 |
| Copyright terms: Public domain | W3C validator |