ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan Unicode version

Theorem dcan 933
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( ph  /\  ps )
)

Proof of Theorem dcan
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( -.  ph  /\  ps )  ->  -.  ph )
21intnanrd 932 . . . 4  |-  ( ( -.  ph  /\  ps )  ->  -.  ( ph  /\  ps ) )
32orim2i 761 . . 3  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ps ) )  -> 
( ( ph  /\  ps )  \/  -.  ( ph  /\  ps )
) )
4 simpr 110 . . . . 5  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  -.  ps )
54intnand 931 . . . 4  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  -.  ( ph  /\ 
ps ) )
65olcd 734 . . 3  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  ( ( ph  /\ 
ps )  \/  -.  ( ph  /\  ps )
) )
73, 6jaoi 716 . 2  |-  ( ( ( ( ph  /\  ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) )  ->  ( ( ph  /\ 
ps )  \/  -.  ( ph  /\  ps )
) )
8 df-dc 835 . . . 4  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
9 df-dc 835 . . . 4  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
108, 9anbi12i 460 . . 3  |-  ( (DECID  ph  /\ DECID  ps ) 
<->  ( ( ph  \/  -.  ph )  /\  ( ps  \/  -.  ps )
) )
11 andi 818 . . 3  |-  ( ( ( ph  \/  -.  ph )  /\  ( ps  \/  -.  ps )
)  <->  ( ( (
ph  \/  -.  ph )  /\  ps )  \/  (
( ph  \/  -.  ph )  /\  -.  ps ) ) )
12 andir 819 . . . 4  |-  ( ( ( ph  \/  -.  ph )  /\  ps )  <->  ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ps ) ) )
1312orbi1i 763 . . 3  |-  ( ( ( ( ph  \/  -.  ph )  /\  ps )  \/  ( ( ph  \/  -.  ph )  /\  -.  ps ) )  <-> 
( ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) ) )
1410, 11, 133bitri 206 . 2  |-  ( (DECID  ph  /\ DECID  ps ) 
<->  ( ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) ) )
15 df-dc 835 . 2  |-  (DECID  ( ph  /\ 
ps )  <->  ( ( ph  /\  ps )  \/ 
-.  ( ph  /\  ps ) ) )
167, 14, 153imtr4i 201 1  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by:  dcan2  934
  Copyright terms: Public domain W3C validator