ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan Unicode version

Theorem dcan 923
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( ph  /\  ps )
)

Proof of Theorem dcan
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( -.  ph  /\  ps )  ->  -.  ph )
21intnanrd 922 . . . 4  |-  ( ( -.  ph  /\  ps )  ->  -.  ( ph  /\  ps ) )
32orim2i 751 . . 3  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ps ) )  -> 
( ( ph  /\  ps )  \/  -.  ( ph  /\  ps )
) )
4 simpr 109 . . . . 5  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  -.  ps )
54intnand 921 . . . 4  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  -.  ( ph  /\ 
ps ) )
65olcd 724 . . 3  |-  ( ( ( ph  \/  -.  ph )  /\  -.  ps )  ->  ( ( ph  /\ 
ps )  \/  -.  ( ph  /\  ps )
) )
73, 6jaoi 706 . 2  |-  ( ( ( ( ph  /\  ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) )  ->  ( ( ph  /\ 
ps )  \/  -.  ( ph  /\  ps )
) )
8 df-dc 825 . . . 4  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
9 df-dc 825 . . . 4  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
108, 9anbi12i 456 . . 3  |-  ( (DECID  ph  /\ DECID  ps ) 
<->  ( ( ph  \/  -.  ph )  /\  ( ps  \/  -.  ps )
) )
11 andi 808 . . 3  |-  ( ( ( ph  \/  -.  ph )  /\  ( ps  \/  -.  ps )
)  <->  ( ( (
ph  \/  -.  ph )  /\  ps )  \/  (
( ph  \/  -.  ph )  /\  -.  ps ) ) )
12 andir 809 . . . 4  |-  ( ( ( ph  \/  -.  ph )  /\  ps )  <->  ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ps ) ) )
1312orbi1i 753 . . 3  |-  ( ( ( ( ph  \/  -.  ph )  /\  ps )  \/  ( ( ph  \/  -.  ph )  /\  -.  ps ) )  <-> 
( ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) ) )
1410, 11, 133bitri 205 . 2  |-  ( (DECID  ph  /\ DECID  ps ) 
<->  ( ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ps )
)  \/  ( (
ph  \/  -.  ph )  /\  -.  ps ) ) )
15 df-dc 825 . 2  |-  (DECID  ( ph  /\ 
ps )  <->  ( ( ph  /\  ps )  \/ 
-.  ( ph  /\  ps ) ) )
167, 14, 153imtr4i 200 1  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  dcan2  924
  Copyright terms: Public domain W3C validator