Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcan | Unicode version |
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) |
Ref | Expression |
---|---|
dcan | DECID DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 | |
2 | 1 | intnanrd 922 | . . . 4 |
3 | 2 | orim2i 751 | . . 3 |
4 | simpr 109 | . . . . 5 | |
5 | 4 | intnand 921 | . . . 4 |
6 | 5 | olcd 724 | . . 3 |
7 | 3, 6 | jaoi 706 | . 2 |
8 | df-dc 825 | . . . 4 DECID | |
9 | df-dc 825 | . . . 4 DECID | |
10 | 8, 9 | anbi12i 456 | . . 3 DECID DECID |
11 | andi 808 | . . 3 | |
12 | andir 809 | . . . 4 | |
13 | 12 | orbi1i 753 | . . 3 |
14 | 10, 11, 13 | 3bitri 205 | . 2 DECID DECID |
15 | df-dc 825 | . 2 DECID | |
16 | 7, 14, 15 | 3imtr4i 200 | 1 DECID DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: dcan2 924 |
Copyright terms: Public domain | W3C validator |