![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnand | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
intnand |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simpr 108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl 591 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-in1 577 ax-in2 578 |
This theorem is referenced by: dcan 876 poxp 5932 cauappcvgprlemladdrl 7119 caucvgprlemladdrl 7140 xrrebnd 9176 fzpreddisj 9378 fzp1nel 9411 gcdsupex 10729 gcdsupcl 10730 gcdnncl 10739 gcd2n0cl 10741 qredeu 10859 cncongr2 10866 divnumden 10954 divdenle 10955 |
Copyright terms: Public domain | W3C validator |