ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand Unicode version

Theorem intnand 932
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnand  |-  ( ph  ->  -.  ( ch  /\  ps ) )

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpr 110 . 2  |-  ( ( ch  /\  ps )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  poxp  6285  cauappcvgprlemladdrl  7717  caucvgprlemladdrl  7738  xrrebnd  9885  fzpreddisj  10137  fzp1nel  10170  fprodntrivap  11727  gcdsupex  12094  gcdsupcl  12095  gcdnncl  12104  gcd2n0cl  12106  qredeu  12235  cncongr2  12242  divnumden  12334  divdenle  12335  phisum  12378  pythagtriplem4  12406  pythagtriplem8  12410  pythagtriplem9  12411  isnsgrp  12989  ivthinclemdisj  14794  lgsneg  15140
  Copyright terms: Public domain W3C validator