ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand Unicode version

Theorem intnand 932
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnand  |-  ( ph  ->  -.  ( ch  /\  ps ) )

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpr 110 . 2  |-  ( ( ch  /\  ps )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  poxp  6287  cauappcvgprlemladdrl  7719  caucvgprlemladdrl  7740  xrrebnd  9888  fzpreddisj  10140  fzp1nel  10173  fprodntrivap  11730  gcdsupex  12097  gcdsupcl  12098  gcdnncl  12107  gcd2n0cl  12109  qredeu  12238  cncongr2  12245  divnumden  12337  divdenle  12338  phisum  12381  pythagtriplem4  12409  pythagtriplem8  12413  pythagtriplem9  12414  isnsgrp  12992  ivthinclemdisj  14819  lgsneg  15181
  Copyright terms: Public domain W3C validator