ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand Unicode version

Theorem intnand 933
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnand  |-  ( ph  ->  -.  ( ch  /\  ps ) )

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpr 110 . 2  |-  ( ( ch  /\  ps )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  935  poxp  6325  cauappcvgprlemladdrl  7777  caucvgprlemladdrl  7798  xrrebnd  9948  fzpreddisj  10200  fzp1nel  10233  fprodntrivap  11939  bitsfzo  12310  bitsmod  12311  gcdsupex  12322  gcdsupcl  12323  gcdnncl  12332  gcd2n0cl  12334  qredeu  12463  cncongr2  12470  divnumden  12562  divdenle  12563  phisum  12607  pythagtriplem4  12635  pythagtriplem8  12639  pythagtriplem9  12640  isnsgrp  13282  ivthinclemdisj  15156  lgsneg  15545
  Copyright terms: Public domain W3C validator