| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | nsyl 631 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: dcand 938 poxp 6384 cauappcvgprlemladdrl 7852 caucvgprlemladdrl 7873 xrrebnd 10023 fzpreddisj 10275 fzp1nel 10308 fprodntrivap 12103 bitsfzo 12474 bitsmod 12475 gcdsupex 12486 gcdsupcl 12487 gcdnncl 12496 gcd2n0cl 12498 qredeu 12627 cncongr2 12634 divnumden 12726 divdenle 12727 phisum 12771 pythagtriplem4 12799 pythagtriplem8 12803 pythagtriplem9 12804 isnsgrp 13447 ivthinclemdisj 15322 lgsneg 15711 umgredgnlp 15958 umgr2edg1 16015 umgr2edgneu 16018 |
| Copyright terms: Public domain | W3C validator |