Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnand | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 |
Ref | Expression |
---|---|
intnand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 | |
2 | simpr 110 | . 2 | |
3 | 1, 2 | nsyl 628 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 614 ax-in2 615 |
This theorem is referenced by: dcan 933 poxp 6223 cauappcvgprlemladdrl 7631 caucvgprlemladdrl 7652 xrrebnd 9790 fzpreddisj 10041 fzp1nel 10074 fprodntrivap 11560 gcdsupex 11925 gcdsupcl 11926 gcdnncl 11935 gcd2n0cl 11937 qredeu 12064 cncongr2 12071 divnumden 12163 divdenle 12164 phisum 12207 pythagtriplem4 12235 pythagtriplem8 12239 pythagtriplem9 12240 isnsgrp 12678 ivthinclemdisj 13689 lgsneg 13996 |
Copyright terms: Public domain | W3C validator |