ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand Unicode version

Theorem intnand 931
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnand  |-  ( ph  ->  -.  ( ch  /\  ps ) )

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpr 110 . 2  |-  ( ( ch  /\  ps )  ->  ps )
31, 2nsyl 628 1  |-  ( ph  ->  -.  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 614  ax-in2 615
This theorem is referenced by:  dcan  933  poxp  6223  cauappcvgprlemladdrl  7631  caucvgprlemladdrl  7652  xrrebnd  9790  fzpreddisj  10041  fzp1nel  10074  fprodntrivap  11560  gcdsupex  11925  gcdsupcl  11926  gcdnncl  11935  gcd2n0cl  11937  qredeu  12064  cncongr2  12071  divnumden  12163  divdenle  12164  phisum  12207  pythagtriplem4  12235  pythagtriplem8  12239  pythagtriplem9  12240  isnsgrp  12678  ivthinclemdisj  13689  lgsneg  13996
  Copyright terms: Public domain W3C validator