| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 935 poxp 6325 cauappcvgprlemladdrl 7777 caucvgprlemladdrl 7798 xrrebnd 9948 fzpreddisj 10200 fzp1nel 10233 fprodntrivap 11939 bitsfzo 12310 bitsmod 12311 gcdsupex 12322 gcdsupcl 12323 gcdnncl 12332 gcd2n0cl 12334 qredeu 12463 cncongr2 12470 divnumden 12562 divdenle 12563 phisum 12607 pythagtriplem4 12635 pythagtriplem8 12639 pythagtriplem9 12640 isnsgrp 13282 ivthinclemdisj 15156 lgsneg 15545 |
| Copyright terms: Public domain | W3C validator |