ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnand Unicode version

Theorem intnand 932
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnand  |-  ( ph  ->  -.  ( ch  /\  ps ) )

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpr 110 . 2  |-  ( ( ch  /\  ps )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ch  /\  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  poxp  6290  cauappcvgprlemladdrl  7724  caucvgprlemladdrl  7745  xrrebnd  9894  fzpreddisj  10146  fzp1nel  10179  fprodntrivap  11749  bitsfzo  12119  gcdsupex  12124  gcdsupcl  12125  gcdnncl  12134  gcd2n0cl  12136  qredeu  12265  cncongr2  12272  divnumden  12364  divdenle  12365  phisum  12409  pythagtriplem4  12437  pythagtriplem8  12441  pythagtriplem9  12442  isnsgrp  13049  ivthinclemdisj  14876  lgsneg  15265
  Copyright terms: Public domain W3C validator