Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnand | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 |
Ref | Expression |
---|---|
intnand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 | |
2 | simpr 109 | . 2 | |
3 | 1, 2 | nsyl 618 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-in1 604 ax-in2 605 |
This theorem is referenced by: dcan 923 poxp 6200 cauappcvgprlemladdrl 7598 caucvgprlemladdrl 7619 xrrebnd 9755 fzpreddisj 10006 fzp1nel 10039 fprodntrivap 11525 gcdsupex 11890 gcdsupcl 11891 gcdnncl 11900 gcd2n0cl 11902 qredeu 12029 cncongr2 12036 divnumden 12128 divdenle 12129 phisum 12172 pythagtriplem4 12200 pythagtriplem8 12204 pythagtriplem9 12205 ivthinclemdisj 13258 lgsneg 13565 |
Copyright terms: Public domain | W3C validator |