![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnand | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
intnand |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl 629 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
This theorem is referenced by: dcand 934 poxp 6287 cauappcvgprlemladdrl 7719 caucvgprlemladdrl 7740 xrrebnd 9888 fzpreddisj 10140 fzp1nel 10173 fprodntrivap 11730 gcdsupex 12097 gcdsupcl 12098 gcdnncl 12107 gcd2n0cl 12109 qredeu 12238 cncongr2 12245 divnumden 12337 divdenle 12338 phisum 12381 pythagtriplem4 12409 pythagtriplem8 12413 pythagtriplem9 12414 isnsgrp 12992 ivthinclemdisj 14819 lgsneg 15181 |
Copyright terms: Public domain | W3C validator |