![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intnand | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
intnand |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl 629 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
This theorem is referenced by: dcand 934 poxp 6285 cauappcvgprlemladdrl 7717 caucvgprlemladdrl 7738 xrrebnd 9885 fzpreddisj 10137 fzp1nel 10170 fprodntrivap 11727 gcdsupex 12094 gcdsupcl 12095 gcdnncl 12104 gcd2n0cl 12106 qredeu 12235 cncongr2 12242 divnumden 12334 divdenle 12335 phisum 12378 pythagtriplem4 12406 pythagtriplem8 12410 pythagtriplem9 12411 isnsgrp 12989 ivthinclemdisj 14794 lgsneg 15140 |
Copyright terms: Public domain | W3C validator |