| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnand | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | nsyl 631 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: dcand 938 poxp 6368 cauappcvgprlemladdrl 7832 caucvgprlemladdrl 7853 xrrebnd 10003 fzpreddisj 10255 fzp1nel 10288 fprodntrivap 12081 bitsfzo 12452 bitsmod 12453 gcdsupex 12464 gcdsupcl 12465 gcdnncl 12474 gcd2n0cl 12476 qredeu 12605 cncongr2 12612 divnumden 12704 divdenle 12705 phisum 12749 pythagtriplem4 12777 pythagtriplem8 12781 pythagtriplem9 12782 isnsgrp 13425 ivthinclemdisj 15299 lgsneg 15688 umgredgnlp 15935 umgr2edg1 15992 umgr2edgneu 15995 |
| Copyright terms: Public domain | W3C validator |