ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd Unicode version

Theorem intnanrd 918
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnanrd  |-  ( ph  ->  -.  ( ps  /\  ch ) )

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpl 108 . 2  |-  ( ( ps  /\  ch )  ->  ps )
31, 2nsyl 618 1  |-  ( ph  ->  -.  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 604  ax-in2 605
This theorem is referenced by:  dcan  919  bianfd  933  frecabcl  6340  frecsuclem  6347  xrrebnd  9705  fzpreddisj  9955  iseqf1olemqk  10375  gcdsupex  11821  gcdsupcl  11822  nndvdslegcd  11829  divgcdnn  11839  sqgcd  11893  coprm  11998  ctiunctlemudc  12138
  Copyright terms: Public domain W3C validator