ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd Unicode version

Theorem intnanrd 933
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnanrd  |-  ( ph  ->  -.  ( ps  /\  ch ) )

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpl 109 . 2  |-  ( ( ps  /\  ch )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  bianfd  950  frecabcl  6466  frecsuclem  6473  xrrebnd  9911  fzpreddisj  10163  iseqf1olemqk  10616  gcdsupex  12149  gcdsupcl  12150  nndvdslegcd  12157  divgcdnn  12167  sqgcd  12221  coprm  12337  pclemdc  12482  1arith  12561  ctiunctlemudc  12679  gsum0g  13098  gsumval2  13099  lgsval2lem  15335  lgsval4a  15347  lgsdilem  15352
  Copyright terms: Public domain W3C validator