| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnanrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 934 bianfd 950 frecabcl 6457 frecsuclem 6464 xrrebnd 9894 fzpreddisj 10146 iseqf1olemqk 10599 gcdsupex 12124 gcdsupcl 12125 nndvdslegcd 12132 divgcdnn 12142 sqgcd 12196 coprm 12312 pclemdc 12457 1arith 12536 ctiunctlemudc 12654 gsum0g 13039 gsumval2 13040 lgsval2lem 15251 lgsval4a 15263 lgsdilem 15268 |
| Copyright terms: Public domain | W3C validator |