Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnanrd | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 |
Ref | Expression |
---|---|
intnanrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 | |
2 | simpl 108 | . 2 | |
3 | 1, 2 | nsyl 618 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-in1 604 ax-in2 605 |
This theorem is referenced by: dcan 919 bianfd 933 frecabcl 6340 frecsuclem 6347 xrrebnd 9705 fzpreddisj 9955 iseqf1olemqk 10375 gcdsupex 11821 gcdsupcl 11822 nndvdslegcd 11829 divgcdnn 11839 sqgcd 11893 coprm 11998 ctiunctlemudc 12138 |
Copyright terms: Public domain | W3C validator |