| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnanrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 934 bianfd 950 frecabcl 6466 frecsuclem 6473 xrrebnd 9911 fzpreddisj 10163 iseqf1olemqk 10616 gcdsupex 12149 gcdsupcl 12150 nndvdslegcd 12157 divgcdnn 12167 sqgcd 12221 coprm 12337 pclemdc 12482 1arith 12561 ctiunctlemudc 12679 gsum0g 13098 gsumval2 13099 lgsval2lem 15335 lgsval4a 15347 lgsdilem 15352 |
| Copyright terms: Public domain | W3C validator |