ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd Unicode version

Theorem intnanrd 934
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnanrd  |-  ( ph  ->  -.  ( ps  /\  ch ) )

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpl 109 . 2  |-  ( ( ps  /\  ch )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  935  bianfd  951  3bior1fand  1365  frecabcl  6487  frecsuclem  6494  xrrebnd  9943  fzpreddisj  10195  iseqf1olemqk  10654  gcdsupex  12311  gcdsupcl  12312  nndvdslegcd  12319  divgcdnn  12329  sqgcd  12383  coprm  12499  pclemdc  12644  1arith  12723  ctiunctlemudc  12841  gsum0g  13261  gsumval2  13262  lgsval2lem  15520  lgsval4a  15532  lgsdilem  15537
  Copyright terms: Public domain W3C validator