| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnanrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | 1, 2 | nsyl 631 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: dcand 938 bianfd 954 3bior1fand 1387 frecabcl 6545 frecsuclem 6552 xrrebnd 10015 fzpreddisj 10267 iseqf1olemqk 10729 gcdsupex 12478 gcdsupcl 12479 nndvdslegcd 12486 divgcdnn 12496 sqgcd 12550 coprm 12666 pclemdc 12811 1arith 12890 ctiunctlemudc 13008 gsum0g 13429 gsumval2 13430 lgsval2lem 15689 lgsval4a 15701 lgsdilem 15706 |
| Copyright terms: Public domain | W3C validator |