| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnanrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 935 bianfd 951 3bior1fand 1365 frecabcl 6485 frecsuclem 6492 xrrebnd 9941 fzpreddisj 10193 iseqf1olemqk 10652 gcdsupex 12278 gcdsupcl 12279 nndvdslegcd 12286 divgcdnn 12296 sqgcd 12350 coprm 12466 pclemdc 12611 1arith 12690 ctiunctlemudc 12808 gsum0g 13228 gsumval2 13229 lgsval2lem 15487 lgsval4a 15499 lgsdilem 15504 |
| Copyright terms: Public domain | W3C validator |