| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnanrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 935 bianfd 951 3bior1fand 1365 frecabcl 6487 frecsuclem 6494 xrrebnd 9943 fzpreddisj 10195 iseqf1olemqk 10654 gcdsupex 12311 gcdsupcl 12312 nndvdslegcd 12319 divgcdnn 12329 sqgcd 12383 coprm 12499 pclemdc 12644 1arith 12723 ctiunctlemudc 12841 gsum0g 13261 gsumval2 13262 lgsval2lem 15520 lgsval4a 15532 lgsdilem 15537 |
| Copyright terms: Public domain | W3C validator |