ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd Unicode version

Theorem intnanrd 934
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnanrd  |-  ( ph  ->  -.  ( ps  /\  ch ) )

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpl 109 . 2  |-  ( ( ps  /\  ch )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  935  bianfd  951  3bior1fand  1365  frecabcl  6508  frecsuclem  6515  xrrebnd  9976  fzpreddisj  10228  iseqf1olemqk  10689  gcdsupex  12393  gcdsupcl  12394  nndvdslegcd  12401  divgcdnn  12411  sqgcd  12465  coprm  12581  pclemdc  12726  1arith  12805  ctiunctlemudc  12923  gsum0g  13343  gsumval2  13344  lgsval2lem  15602  lgsval4a  15614  lgsdilem  15619
  Copyright terms: Public domain W3C validator