ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd Unicode version

Theorem intnanrd 933
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnanrd  |-  ( ph  ->  -.  ( ps  /\  ch ) )

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpl 109 . 2  |-  ( ( ps  /\  ch )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  bianfd  950  frecabcl  6452  frecsuclem  6459  xrrebnd  9885  fzpreddisj  10137  iseqf1olemqk  10578  gcdsupex  12094  gcdsupcl  12095  nndvdslegcd  12102  divgcdnn  12112  sqgcd  12166  coprm  12282  pclemdc  12426  1arith  12505  ctiunctlemudc  12594  gsum0g  12979  gsumval2  12980  lgsval2lem  15126  lgsval4a  15138  lgsdilem  15143
  Copyright terms: Public domain W3C validator