| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnanrd | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnanrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: dcand 935 bianfd 951 3bior1fand 1365 frecabcl 6508 frecsuclem 6515 xrrebnd 9976 fzpreddisj 10228 iseqf1olemqk 10689 gcdsupex 12393 gcdsupcl 12394 nndvdslegcd 12401 divgcdnn 12411 sqgcd 12465 coprm 12581 pclemdc 12726 1arith 12805 ctiunctlemudc 12923 gsum0g 13343 gsumval2 13344 lgsval2lem 15602 lgsval4a 15614 lgsdilem 15619 |
| Copyright terms: Public domain | W3C validator |