ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd Unicode version

Theorem intnanrd 937
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnanrd  |-  ( ph  ->  -.  ( ps  /\  ch ) )

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpl 109 . 2  |-  ( ( ps  /\  ch )  ->  ps )
31, 2nsyl 631 1  |-  ( ph  ->  -.  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 617  ax-in2 618
This theorem is referenced by:  dcand  938  bianfd  954  3bior1fand  1387  frecabcl  6545  frecsuclem  6552  xrrebnd  10015  fzpreddisj  10267  iseqf1olemqk  10729  gcdsupex  12478  gcdsupcl  12479  nndvdslegcd  12486  divgcdnn  12496  sqgcd  12550  coprm  12666  pclemdc  12811  1arith  12890  ctiunctlemudc  13008  gsum0g  13429  gsumval2  13430  lgsval2lem  15689  lgsval4a  15701  lgsdilem  15706
  Copyright terms: Public domain W3C validator