ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanrd Unicode version

Theorem intnanrd 933
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
intnanrd  |-  ( ph  ->  -.  ( ps  /\  ch ) )

Proof of Theorem intnanrd
StepHypRef Expression
1 intnand.1 . 2  |-  ( ph  ->  -.  ps )
2 simpl 109 . 2  |-  ( ( ps  /\  ch )  ->  ps )
31, 2nsyl 629 1  |-  ( ph  ->  -.  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem is referenced by:  dcand  934  bianfd  950  frecabcl  6454  frecsuclem  6461  xrrebnd  9888  fzpreddisj  10140  iseqf1olemqk  10581  gcdsupex  12097  gcdsupcl  12098  nndvdslegcd  12105  divgcdnn  12115  sqgcd  12169  coprm  12285  pclemdc  12429  1arith  12508  ctiunctlemudc  12597  gsum0g  12982  gsumval2  12983  lgsval2lem  15167  lgsval4a  15179  lgsdilem  15184
  Copyright terms: Public domain W3C validator