ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan GIF version

Theorem dcan 936
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))

Proof of Theorem dcan
StepHypRef Expression
1 simpl 109 . 2 ((DECID 𝜑DECID 𝜓) → DECID 𝜑)
2 simpr 110 . 2 ((DECID 𝜑DECID 𝜓) → DECID 𝜓)
31, 2dcand 935 1 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837
This theorem is referenced by:  dcan2  937  dcbi  939  annimdc  940  pm4.55dc  941  orandc  942  anordc  959  xordidc  1419  gcdmndc  12346
  Copyright terms: Public domain W3C validator