ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan GIF version

Theorem dcan 935
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))

Proof of Theorem dcan
StepHypRef Expression
1 simpl 109 . 2 ((DECID 𝜑DECID 𝜓) → DECID 𝜑)
2 simpr 110 . 2 ((DECID 𝜑DECID 𝜓) → DECID 𝜓)
31, 2dcand 934 1 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by:  dcan2  936  dcbi  938  annimdc  939  pm4.55dc  940  orandc  941  anordc  958  xordidc  1410  gcdmndc  12081
  Copyright terms: Public domain W3C validator