| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dcan | GIF version | ||
| Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| dcan | ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID 𝜑) | |
| 2 | simpr 110 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID 𝜓) | |
| 3 | 1, 2 | dcand 934 | 1 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∧ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: dcan2 936 dcbi 938 annimdc 939 pm4.55dc 940 orandc 941 anordc 958 xordidc 1410 gcdmndc 12122 | 
| Copyright terms: Public domain | W3C validator |