ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan GIF version

Theorem dcan 919
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))

Proof of Theorem dcan
StepHypRef Expression
1 simpl 108 . . . . . 6 ((¬ 𝜑𝜓) → ¬ 𝜑)
21intnanrd 918 . . . . 5 ((¬ 𝜑𝜓) → ¬ (𝜑𝜓))
32orim2i 751 . . . 4 (((𝜑𝜓) ∨ (¬ 𝜑𝜓)) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
4 simpr 109 . . . . . 6 (((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓) → ¬ 𝜓)
54intnand 917 . . . . 5 (((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
65olcd 724 . . . 4 (((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
73, 6jaoi 706 . . 3 ((((𝜑𝜓) ∨ (¬ 𝜑𝜓)) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
8 df-dc 821 . . . . 5 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
9 df-dc 821 . . . . 5 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
108, 9anbi12i 456 . . . 4 ((DECID 𝜑DECID 𝜓) ↔ ((𝜑 ∨ ¬ 𝜑) ∧ (𝜓 ∨ ¬ 𝜓)))
11 andi 808 . . . 4 (((𝜑 ∨ ¬ 𝜑) ∧ (𝜓 ∨ ¬ 𝜓)) ↔ (((𝜑 ∨ ¬ 𝜑) ∧ 𝜓) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)))
12 andir 809 . . . . 5 (((𝜑 ∨ ¬ 𝜑) ∧ 𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜓)))
1312orbi1i 753 . . . 4 ((((𝜑 ∨ ¬ 𝜑) ∧ 𝜓) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)) ↔ (((𝜑𝜓) ∨ (¬ 𝜑𝜓)) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)))
1410, 11, 133bitri 205 . . 3 ((DECID 𝜑DECID 𝜓) ↔ (((𝜑𝜓) ∨ (¬ 𝜑𝜓)) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)))
15 df-dc 821 . . 3 (DECID (𝜑𝜓) ↔ ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
167, 14, 153imtr4i 200 . 2 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
1716ex 114 1 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 821
This theorem is referenced by:  dcbi  921  annimdc  922  pm4.55dc  923  orandc  924  anordc  941  xordidc  1378  nn0n0n1ge2b  9222  gcdmndc  11804  gcdsupex  11813  gcdsupcl  11814  gcdaddm  11840  lcmval  11912  lcmcllem  11916  lcmledvds  11919  ctiunctlemudc  12125  nninfsellemdc  13531
  Copyright terms: Public domain W3C validator