ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcan GIF version

Theorem dcan 923
Description: A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
Assertion
Ref Expression
dcan ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))

Proof of Theorem dcan
StepHypRef Expression
1 simpl 108 . . . . 5 ((¬ 𝜑𝜓) → ¬ 𝜑)
21intnanrd 922 . . . 4 ((¬ 𝜑𝜓) → ¬ (𝜑𝜓))
32orim2i 751 . . 3 (((𝜑𝜓) ∨ (¬ 𝜑𝜓)) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
4 simpr 109 . . . . 5 (((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓) → ¬ 𝜓)
54intnand 921 . . . 4 (((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
65olcd 724 . . 3 (((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
73, 6jaoi 706 . 2 ((((𝜑𝜓) ∨ (¬ 𝜑𝜓)) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)) → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
8 df-dc 825 . . . 4 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
9 df-dc 825 . . . 4 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
108, 9anbi12i 456 . . 3 ((DECID 𝜑DECID 𝜓) ↔ ((𝜑 ∨ ¬ 𝜑) ∧ (𝜓 ∨ ¬ 𝜓)))
11 andi 808 . . 3 (((𝜑 ∨ ¬ 𝜑) ∧ (𝜓 ∨ ¬ 𝜓)) ↔ (((𝜑 ∨ ¬ 𝜑) ∧ 𝜓) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)))
12 andir 809 . . . 4 (((𝜑 ∨ ¬ 𝜑) ∧ 𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜓)))
1312orbi1i 753 . . 3 ((((𝜑 ∨ ¬ 𝜑) ∧ 𝜓) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)) ↔ (((𝜑𝜓) ∨ (¬ 𝜑𝜓)) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)))
1410, 11, 133bitri 205 . 2 ((DECID 𝜑DECID 𝜓) ↔ (((𝜑𝜓) ∨ (¬ 𝜑𝜓)) ∨ ((𝜑 ∨ ¬ 𝜑) ∧ ¬ 𝜓)))
15 df-dc 825 . 2 (DECID (𝜑𝜓) ↔ ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
167, 14, 153imtr4i 200 1 ((DECID 𝜑DECID 𝜓) → DECID (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  dcan2  924
  Copyright terms: Public domain W3C validator