ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedhb Unicode version

Theorem dedhb 2972
Description: A deduction theorem for converting the inference  |-  F/_ x A =>  |-  ph into a closed theorem. Use nfa1 1587 and nfab 2377 to eliminate the hypothesis of the substitution instance  ps of the inference. For converting the inference form into a deduction form, abidnf 2971 is useful. (Contributed by NM, 8-Dec-2006.)
Hypotheses
Ref Expression
dedhb.1  |-  ( A  =  { z  | 
A. x  z  e.  A }  ->  ( ph 
<->  ps ) )
dedhb.2  |-  ps
Assertion
Ref Expression
dedhb  |-  ( F/_ x A  ->  ph )
Distinct variable groups:    x, z    z, A
Allowed substitution hints:    ph( x, z)    ps( x, z)    A( x)

Proof of Theorem dedhb
StepHypRef Expression
1 dedhb.2 . 2  |-  ps
2 abidnf 2971 . . . 4  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
32eqcomd 2235 . . 3  |-  ( F/_ x A  ->  A  =  { z  |  A. x  z  e.  A } )
4 dedhb.1 . . 3  |-  ( A  =  { z  | 
A. x  z  e.  A }  ->  ( ph 
<->  ps ) )
53, 4syl 14 . 2  |-  ( F/_ x A  ->  ( ph  <->  ps ) )
61, 5mpbiri 168 1  |-  ( F/_ x A  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   {cab 2215   F/_wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator