| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfab | Unicode version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab.1 |
|
| Ref | Expression |
|---|---|
| nfab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 |
. . 3
| |
| 2 | 1 | nfsab 2196 |
. 2
|
| 3 | 2 | nfci 2337 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-nfc 2336 |
| This theorem is referenced by: nfaba1 2353 nfrabw 2686 sbcel12g 3107 sbceqg 3108 nfun 3328 nfpw 3628 nfpr 3682 nfop 3834 nfuni 3855 nfint 3894 intab 3913 nfiunxy 3952 nfiinxy 3953 nfiunya 3954 nfiinya 3955 nfiu1 3956 nfii1 3957 nfopab 4111 nfopab1 4112 nfopab2 4113 repizf2 4205 nfdm 4921 fun11iun 5542 eusvobj2 5929 nfoprab1 5993 nfoprab2 5994 nfoprab3 5995 nfoprab 5996 nfrecs 6392 nffrec 6481 nfixpxy 6803 nfixp1 6804 nfwrd 11020 |
| Copyright terms: Public domain | W3C validator |