| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfab | Unicode version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab.1 |
|
| Ref | Expression |
|---|---|
| nfab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 |
. . 3
| |
| 2 | 1 | nfsab 2197 |
. 2
|
| 3 | 2 | nfci 2338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-nfc 2337 |
| This theorem is referenced by: nfaba1 2354 nfrabw 2687 sbcel12g 3108 sbceqg 3109 nfun 3329 nfpw 3629 nfpr 3683 nfop 3835 nfuni 3856 nfint 3895 intab 3914 nfiunxy 3953 nfiinxy 3954 nfiunya 3955 nfiinya 3956 nfiu1 3957 nfii1 3958 nfopab 4112 nfopab1 4113 nfopab2 4114 repizf2 4206 nfdm 4922 fun11iun 5543 eusvobj2 5930 nfoprab1 5994 nfoprab2 5995 nfoprab3 5996 nfoprab 5997 nfrecs 6393 nffrec 6482 nfixpxy 6804 nfixp1 6805 nfwrd 11022 |
| Copyright terms: Public domain | W3C validator |