| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfab | Unicode version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab.1 |
|
| Ref | Expression |
|---|---|
| nfab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 |
. . 3
| |
| 2 | 1 | nfsab 2199 |
. 2
|
| 3 | 2 | nfci 2340 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-nfc 2339 |
| This theorem is referenced by: nfaba1 2356 nfrabw 2689 sbcel12g 3116 sbceqg 3117 nfun 3337 nfpw 3639 nfpr 3693 nfop 3849 nfuni 3870 nfint 3909 intab 3928 nfiunxy 3967 nfiinxy 3968 nfiunya 3969 nfiinya 3970 nfiu1 3971 nfii1 3972 nfopab 4128 nfopab1 4129 nfopab2 4130 repizf2 4222 nfdm 4941 fun11iun 5565 eusvobj2 5953 nfoprab1 6017 nfoprab2 6018 nfoprab3 6019 nfoprab 6020 nfrecs 6416 nffrec 6505 nfixpxy 6827 nfixp1 6828 nfwrd 11059 |
| Copyright terms: Public domain | W3C validator |