Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeu | Unicode version |
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
Ref | Expression |
---|---|
eqeu.1 |
Ref | Expression |
---|---|
eqeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeu.1 | . . . . 5 | |
2 | 1 | spcegv 2814 | . . . 4 |
3 | 2 | imp 123 | . . 3 |
4 | 3 | 3adant3 1007 | . 2 |
5 | eqeq2 2175 | . . . . . . 7 | |
6 | 5 | imbi2d 229 | . . . . . 6 |
7 | 6 | albidv 1812 | . . . . 5 |
8 | 7 | spcegv 2814 | . . . 4 |
9 | 8 | imp 123 | . . 3 |
10 | 9 | 3adant2 1006 | . 2 |
11 | nfv 1516 | . . 3 | |
12 | 11 | eu3 2060 | . 2 |
13 | 4, 10, 12 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wal 1341 wceq 1343 wex 1480 weu 2014 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |