ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeu Unicode version

Theorem eqeu 2896
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
Hypothesis
Ref Expression
eqeu.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
eqeu  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E! x ph )
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem eqeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeu.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21spcegv 2814 . . . 4  |-  ( A  e.  B  ->  ( ps  ->  E. x ph )
)
32imp 123 . . 3  |-  ( ( A  e.  B  /\  ps )  ->  E. x ph )
433adant3 1007 . 2  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E. x ph )
5 eqeq2 2175 . . . . . . 7  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
65imbi2d 229 . . . . . 6  |-  ( y  =  A  ->  (
( ph  ->  x  =  y )  <->  ( ph  ->  x  =  A ) ) )
76albidv 1812 . . . . 5  |-  ( y  =  A  ->  ( A. x ( ph  ->  x  =  y )  <->  A. x
( ph  ->  x  =  A ) ) )
87spcegv 2814 . . . 4  |-  ( A  e.  B  ->  ( A. x ( ph  ->  x  =  A )  ->  E. y A. x (
ph  ->  x  =  y ) ) )
98imp 123 . . 3  |-  ( ( A  e.  B  /\  A. x ( ph  ->  x  =  A ) )  ->  E. y A. x
( ph  ->  x  =  y ) )
1093adant2 1006 . 2  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E. y A. x ( ph  ->  x  =  y ) )
11 nfv 1516 . . 3  |-  F/ y
ph
1211eu3 2060 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
134, 10, 12sylanbrc 414 1  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968   A.wal 1341    = wceq 1343   E.wex 1480   E!weu 2014    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator