| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeu | Unicode version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
| Ref | Expression |
|---|---|
| eqeu.1 |
|
| Ref | Expression |
|---|---|
| eqeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeu.1 |
. . . . 5
| |
| 2 | 1 | spcegv 2861 |
. . . 4
|
| 3 | 2 | imp 124 |
. . 3
|
| 4 | 3 | 3adant3 1020 |
. 2
|
| 5 | eqeq2 2215 |
. . . . . . 7
| |
| 6 | 5 | imbi2d 230 |
. . . . . 6
|
| 7 | 6 | albidv 1847 |
. . . . 5
|
| 8 | 7 | spcegv 2861 |
. . . 4
|
| 9 | 8 | imp 124 |
. . 3
|
| 10 | 9 | 3adant2 1019 |
. 2
|
| 11 | nfv 1551 |
. . 3
| |
| 12 | 11 | eu3 2100 |
. 2
|
| 13 | 4, 10, 12 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |