| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeu | Unicode version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
| Ref | Expression |
|---|---|
| eqeu.1 |
|
| Ref | Expression |
|---|---|
| eqeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeu.1 |
. . . . 5
| |
| 2 | 1 | spcegv 2860 |
. . . 4
|
| 3 | 2 | imp 124 |
. . 3
|
| 4 | 3 | 3adant3 1019 |
. 2
|
| 5 | eqeq2 2214 |
. . . . . . 7
| |
| 6 | 5 | imbi2d 230 |
. . . . . 6
|
| 7 | 6 | albidv 1846 |
. . . . 5
|
| 8 | 7 | spcegv 2860 |
. . . 4
|
| 9 | 8 | imp 124 |
. . 3
|
| 10 | 9 | 3adant2 1018 |
. 2
|
| 11 | nfv 1550 |
. . 3
| |
| 12 | 11 | eu3 2099 |
. 2
|
| 13 | 4, 10, 12 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |