Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeu | Unicode version |
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
Ref | Expression |
---|---|
eqeu.1 |
Ref | Expression |
---|---|
eqeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeu.1 | . . . . 5 | |
2 | 1 | spcegv 2818 | . . . 4 |
3 | 2 | imp 123 | . . 3 |
4 | 3 | 3adant3 1012 | . 2 |
5 | eqeq2 2180 | . . . . . . 7 | |
6 | 5 | imbi2d 229 | . . . . . 6 |
7 | 6 | albidv 1817 | . . . . 5 |
8 | 7 | spcegv 2818 | . . . 4 |
9 | 8 | imp 123 | . . 3 |
10 | 9 | 3adant2 1011 | . 2 |
11 | nfv 1521 | . . 3 | |
12 | 11 | eu3 2065 | . 2 |
13 | 4, 10, 12 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 973 wal 1346 wceq 1348 wex 1485 weu 2019 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |