Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeu | Unicode version |
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
Ref | Expression |
---|---|
eqeu.1 |
Ref | Expression |
---|---|
eqeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeu.1 | . . . . 5 | |
2 | 1 | spcegv 2797 | . . . 4 |
3 | 2 | imp 123 | . . 3 |
4 | 3 | 3adant3 1002 | . 2 |
5 | eqeq2 2164 | . . . . . . 7 | |
6 | 5 | imbi2d 229 | . . . . . 6 |
7 | 6 | albidv 1801 | . . . . 5 |
8 | 7 | spcegv 2797 | . . . 4 |
9 | 8 | imp 123 | . . 3 |
10 | 9 | 3adant2 1001 | . 2 |
11 | nfv 1505 | . . 3 | |
12 | 11 | eu3 2049 | . 2 |
13 | 4, 10, 12 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 963 wal 1330 wceq 1332 wex 1469 weu 2003 wcel 2125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |