ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedhb GIF version

Theorem dedhb 2972
Description: A deduction theorem for converting the inference 𝑥𝐴 => 𝜑 into a closed theorem. Use nfa1 1587 and nfab 2377 to eliminate the hypothesis of the substitution instance 𝜓 of the inference. For converting the inference form into a deduction form, abidnf 2971 is useful. (Contributed by NM, 8-Dec-2006.)
Hypotheses
Ref Expression
dedhb.1 (𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴} → (𝜑𝜓))
dedhb.2 𝜓
Assertion
Ref Expression
dedhb (𝑥𝐴𝜑)
Distinct variable groups:   𝑥,𝑧   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑥,𝑧)   𝐴(𝑥)

Proof of Theorem dedhb
StepHypRef Expression
1 dedhb.2 . 2 𝜓
2 abidnf 2971 . . . 4 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
32eqcomd 2235 . . 3 (𝑥𝐴𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴})
4 dedhb.1 . . 3 (𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴} → (𝜑𝜓))
53, 4syl 14 . 2 (𝑥𝐴 → (𝜑𝜓))
61, 5mpbiri 168 1 (𝑥𝐴𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393   = wceq 1395  wcel 2200  {cab 2215  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator