ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldds Unicode version

Theorem cnfldds 14124
Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14113. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfldds  |-  ( abs 
o.  -  )  =  ( dist ` fld )

Proof of Theorem cnfldds
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cndsex 14109 . 2  |-  ( abs 
o.  -  )  e.  _V
2 cnfldstr 14114 . . 3  |-fld Struct 
<. 1 , ; 1 3 >.
3 dsslid 12890 . . 3  |-  ( dist 
= Slot  ( dist `  ndx )  /\  ( dist `  ndx )  e.  NN )
4 snsstp3 3774 . . . 4  |-  { <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
5 ssun1 3326 . . . . 5  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
6 ssun2 3327 . . . . . 6  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  C_  (
( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  +  v
) ) >. ,  <. ( .r `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
7 df-cnfld 14113 . . . . . 6  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  +  v ) ) >. ,  <. ( .r `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
86, 7sseqtrri 3218 . . . . 5  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  C_fld
95, 8sstri 3192 . . . 4  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_fld
104, 9sstri 3192 . . 3  |-  { <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_fld
112, 3, 10strslfv 12723 . 2  |-  ( ( abs  o.  -  )  e.  _V  ->  ( abs  o. 
-  )  =  (
dist ` fld ) )
121, 11ax-mp 5 1  |-  ( abs 
o.  -  )  =  ( dist ` fld )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155   {csn 3622   {ctp 3624   <.cop 3625    o. ccom 4667   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   CCcc 7877   1c1 7880    + caddc 7882    x. cmul 7884    <_ cle 8062    - cmin 8197   3c3 9042  ;cdc 9457   *ccj 11004   abscabs 11162   ndxcnx 12675   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   *rcstv 12757  TopSetcts 12761   lecple 12762   distcds 12764   UnifSetcunif 12765   MetOpencmopn 14097  metUnifcmetu 14098  ℂfldccnfld 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-rp 9729  df-fz 10084  df-cj 11007  df-abs 11164  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-topgen 12931  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113
This theorem is referenced by:  cnfldms  14772
  Copyright terms: Public domain W3C validator