ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldle Unicode version

Theorem cnfldle 14199
Description: The ordering of the field of complex numbers. Note that this is not actually an ordering on  CC, but we put it in the structure anyway because restricting to  RR does not affect this component, so that  (flds  RR ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14189. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfldle  |-  <_  =  ( le ` fld )

Proof of Theorem cnfldle
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrex 9948 . . . 4  |-  RR*  e.  _V
21, 1xpex 4779 . . 3  |-  ( RR*  X. 
RR* )  e.  _V
3 lerelxr 8106 . . 3  |-  <_  C_  ( RR*  X.  RR* )
42, 3ssexi 4172 . 2  |-  <_  e.  _V
5 cnfldstr 14190 . . 3  |-fld Struct 
<. 1 , ; 1 3 >.
6 pleslid 12904 . . 3  |-  ( le  = Slot  ( le `  ndx )  /\  ( le `  ndx )  e.  NN )
7 snsstp2 3774 . . . 4  |-  { <. ( le `  ndx ) ,  <_  >. }  C_  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
8 ssun1 3327 . . . . 5  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
9 ssun2 3328 . . . . . 6  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  C_  (
( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  +  v
) ) >. ,  <. ( .r `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
10 df-cnfld 14189 . . . . . 6  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  +  v ) ) >. ,  <. ( .r `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
119, 10sseqtrri 3219 . . . . 5  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  C_fld
128, 11sstri 3193 . . . 4  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_fld
137, 12sstri 3193 . . 3  |-  { <. ( le `  ndx ) ,  <_  >. }  C_fld
145, 6, 13strslfv 12748 . 2  |-  (  <_  e.  _V  ->  <_  =  ( le ` fld ) )
154, 14ax-mp 5 1  |-  <_  =  ( le ` fld )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155   {csn 3623   {ctp 3625   <.cop 3626    X. cxp 4662    o. ccom 4668   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   CCcc 7894   1c1 7897    + caddc 7899    x. cmul 7901   RR*cxr 8077    <_ cle 8079    - cmin 8214   3c3 9059  ;cdc 9474   *ccj 11021   abscabs 11179   ndxcnx 12700   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   *rcstv 12782  TopSetcts 12786   lecple 12787   distcds 12789   UnifSetcunif 12790   MetOpencmopn 14173  metUnifcmetu 14174  ℂfldccnfld 14188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-rp 9746  df-fz 10101  df-cj 11024  df-abs 11181  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-starv 12795  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-topgen 12962  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator