ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldle Unicode version

Theorem cnfldle 14516
Description: The ordering of the field of complex numbers. Note that this is not actually an ordering on  CC, but we put it in the structure anyway because restricting to  RR does not affect this component, so that  (flds  RR ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14506. (Revised by GG, 31-Mar-2025.)
Assertion
Ref Expression
cnfldle  |-  <_  =  ( le ` fld )

Proof of Theorem cnfldle
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrex 10040 . . . 4  |-  RR*  e.  _V
21, 1xpex 4831 . . 3  |-  ( RR*  X. 
RR* )  e.  _V
3 lerelxr 8197 . . 3  |-  <_  C_  ( RR*  X.  RR* )
42, 3ssexi 4221 . 2  |-  <_  e.  _V
5 cnfldstr 14507 . . 3  |-fld Struct 
<. 1 , ; 1 3 >.
6 pleslid 13221 . . 3  |-  ( le  = Slot  ( le `  ndx )  /\  ( le `  ndx )  e.  NN )
7 snsstp2 3818 . . . 4  |-  { <. ( le `  ndx ) ,  <_  >. }  C_  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
8 ssun1 3367 . . . . 5  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
9 ssun2 3368 . . . . . 6  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  C_  (
( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  +  v
) ) >. ,  <. ( .r `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
10 df-cnfld 14506 . . . . . 6  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  +  v ) ) >. ,  <. ( .r `  ndx ) ,  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
119, 10sseqtrri 3259 . . . . 5  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  C_fld
128, 11sstri 3233 . . . 4  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_fld
137, 12sstri 3233 . . 3  |-  { <. ( le `  ndx ) ,  <_  >. }  C_fld
145, 6, 13strslfv 13063 . 2  |-  (  <_  e.  _V  ->  <_  =  ( le ` fld ) )
154, 14ax-mp 5 1  |-  <_  =  ( le ` fld )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799    u. cun 3195   {csn 3666   {ctp 3668   <.cop 3669    X. cxp 4714    o. ccom 4720   ` cfv 5314  (class class class)co 5994    e. cmpo 5996   CCcc 7985   1c1 7988    + caddc 7990    x. cmul 7992   RR*cxr 8168    <_ cle 8170    - cmin 8305   3c3 9150  ;cdc 9566   *ccj 11336   abscabs 11494   ndxcnx 13015   Basecbs 13018   +g cplusg 13096   .rcmulr 13097   *rcstv 13098  TopSetcts 13102   lecple 13103   distcds 13105   UnifSetcunif 13106   MetOpencmopn 14490  metUnifcmetu 14491  ℂfldccnfld 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-rp 9838  df-fz 10193  df-cj 11339  df-abs 11496  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mulr 13110  df-starv 13111  df-tset 13115  df-ple 13116  df-ds 13118  df-unif 13119  df-topgen 13279  df-bl 14495  df-mopn 14496  df-fg 14498  df-metu 14499  df-cnfld 14506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator