ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpocnfldmul Unicode version

Theorem mpocnfldmul 14535
Description: The multiplication operation of the field of complex numbers. Version of cnfldmul 14536 using maps-to notation, which does not require ax-mulf 8130. (Contributed by GG, 31-Mar-2025.)
Assertion
Ref Expression
mpocnfldmul  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  ( .r ` fld )
Distinct variable group:    x, y

Proof of Theorem mpocnfldmul
StepHypRef Expression
1 cnex 8131 . . 3  |-  CC  e.  _V
21, 1mpoex 6366 . 2  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  _V
3 cnfldstr 14530 . . 3  |-fld Struct 
<. 1 , ; 1 3 >.
4 mulrslid 13173 . . 3  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
5 snsstp3 3820 . . . 4  |-  { <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  C_  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }
6 ssun1 3367 . . . . 5  |-  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  C_  ( { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } )
7 ssun1 3367 . . . . . 6  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  C_  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
8 df-cnfld 14529 . . . . . 6  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
97, 8sseqtrri 3259 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  C_fld
106, 9sstri 3233 . . . 4  |-  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  C_fld
115, 10sstri 3233 . . 3  |-  { <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  C_fld
123, 4, 11strslfv 13085 . 2  |-  ( ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) )  e.  _V  ->  ( x  e.  CC , 
y  e.  CC  |->  ( x  x.  y ) )  =  ( .r
` fld
) )
132, 12ax-mp 5 1  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  =  ( .r ` fld )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799    u. cun 3195   {csn 3666   {ctp 3668   <.cop 3669    o. ccom 4723   ` cfv 5318  (class class class)co 6007    e. cmpo 6009   CCcc 8005   1c1 8008    + caddc 8010    x. cmul 8012    <_ cle 8190    - cmin 8325   3c3 9170  ;cdc 9586   *ccj 11358   abscabs 11516   ndxcnx 13037   Basecbs 13040   +g cplusg 13118   .rcmulr 13119   *rcstv 13120  TopSetcts 13124   lecple 13125   distcds 13127   UnifSetcunif 13128   MetOpencmopn 14513  metUnifcmetu 14514  ℂfldccnfld 14528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-rp 9858  df-fz 10213  df-cj 11361  df-abs 11518  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-topgen 13301  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529
This theorem is referenced by:  cnfldmul  14536  cnfldui  14561  expghmap  14579  dvply2g  15448
  Copyright terms: Public domain W3C validator