ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ex Unicode version

Theorem enq0ex 7359
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
enq0ex  |- ~Q0  e.  _V

Proof of Theorem enq0ex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4552 . . . 4  |-  om  e.  _V
2 niex 7232 . . . 4  |-  N.  e.  _V
31, 2xpex 4701 . . 3  |-  ( om 
X.  N. )  e.  _V
43, 3xpex 4701 . 2  |-  ( ( om  X.  N. )  X.  ( om  X.  N. ) )  e.  _V
5 df-enq0 7344 . . 3  |- ~Q0  =  { <. v ,  u >.  |  (
( v  e.  ( om  X.  N. )  /\  u  e.  ( om  X.  N. ) )  /\  E. x E. y E. z E. w
( ( v  = 
<. x ,  y >.  /\  u  =  <. z ,  w >. )  /\  ( x  .o  w
)  =  ( y  .o  z ) ) ) }
6 opabssxp 4660 . . 3  |-  { <. v ,  u >.  |  ( ( v  e.  ( om  X.  N. )  /\  u  e.  ( om  X.  N. ) )  /\  E. x E. y E. z E. w
( ( v  = 
<. x ,  y >.  /\  u  =  <. z ,  w >. )  /\  ( x  .o  w
)  =  ( y  .o  z ) ) ) }  C_  (
( om  X.  N. )  X.  ( om  X.  N. ) )
75, 6eqsstri 3160 . 2  |- ~Q0 
C_  ( ( om 
X.  N. )  X.  ( om  X.  N. ) )
84, 7ssexi 4102 1  |- ~Q0  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335   E.wex 1472    e. wcel 2128   _Vcvv 2712   <.cop 3563   {copab 4024   omcom 4549    X. cxp 4584  (class class class)co 5824    .o comu 6361   N.cnpi 7192   ~Q0 ceq0 7206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-opab 4026  df-iom 4550  df-xp 4592  df-ni 7224  df-enq0 7344
This theorem is referenced by:  nqnq0  7361  addnnnq0  7369  mulnnnq0  7370  addclnq0  7371  mulclnq0  7372  prarloclemcalc  7422
  Copyright terms: Public domain W3C validator