ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnnnq Unicode version

Theorem ltnnnq 7424
Description: Ordering of positive integers via  <N or  <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
Assertion
Ref Expression
ltnnnq  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  ) )

Proof of Theorem ltnnnq
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  A  e.  N. )
2 1pi 7316 . . . 4  |-  1o  e.  N.
32a1i 9 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  1o  e.  N. )
4 simpr 110 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  B  e.  N. )
5 ordpipqqs 7375 . . 3  |-  ( ( ( A  e.  N.  /\  1o  e.  N. )  /\  ( B  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. A ,  1o >. ]  ~Q  <Q  [ <. B ,  1o >. ]  ~Q  <->  ( A  .N  1o )  <N  ( 1o  .N  B ) ) )
61, 3, 4, 3, 5syl22anc 1239 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  <->  ( A  .N  1o )  <N  ( 1o 
.N  B ) ) )
7 mulidpi 7319 . . . 4  |-  ( A  e.  N.  ->  ( A  .N  1o )  =  A )
81, 7syl 14 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  1o )  =  A )
9 mulcompig 7332 . . . . 5  |-  ( ( 1o  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  ( B  .N  1o ) )
102, 4, 9sylancr 414 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  ( B  .N  1o ) )
11 mulidpi 7319 . . . . 5  |-  ( B  e.  N.  ->  ( B  .N  1o )  =  B )
124, 11syl 14 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  .N  1o )  =  B )
1310, 12eqtrd 2210 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  B )
148, 13breq12d 4018 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  1o )  <N  ( 1o 
.N  B )  <->  A  <N  B ) )
156, 14bitr2d 189 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   <.cop 3597   class class class wbr 4005  (class class class)co 5877   1oc1o 6412   [cec 6535   N.cnpi 7273    .N cmi 7275    <N clti 7276    ~Q ceq 7280    <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-mi 7307  df-lti 7308  df-enq 7348  df-nqqs 7349  df-ltnqqs 7354
This theorem is referenced by:  caucvgprlemk  7666  caucvgprprlemk  7684  ltrennb  7855
  Copyright terms: Public domain W3C validator