ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnnnq Unicode version

Theorem ltnnnq 7485
Description: Ordering of positive integers via  <N or  <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
Assertion
Ref Expression
ltnnnq  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  ) )

Proof of Theorem ltnnnq
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  A  e.  N. )
2 1pi 7377 . . . 4  |-  1o  e.  N.
32a1i 9 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  1o  e.  N. )
4 simpr 110 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  B  e.  N. )
5 ordpipqqs 7436 . . 3  |-  ( ( ( A  e.  N.  /\  1o  e.  N. )  /\  ( B  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. A ,  1o >. ]  ~Q  <Q  [ <. B ,  1o >. ]  ~Q  <->  ( A  .N  1o )  <N  ( 1o  .N  B ) ) )
61, 3, 4, 3, 5syl22anc 1250 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  <->  ( A  .N  1o )  <N  ( 1o 
.N  B ) ) )
7 mulidpi 7380 . . . 4  |-  ( A  e.  N.  ->  ( A  .N  1o )  =  A )
81, 7syl 14 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  1o )  =  A )
9 mulcompig 7393 . . . . 5  |-  ( ( 1o  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  ( B  .N  1o ) )
102, 4, 9sylancr 414 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  ( B  .N  1o ) )
11 mulidpi 7380 . . . . 5  |-  ( B  e.  N.  ->  ( B  .N  1o )  =  B )
124, 11syl 14 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  .N  1o )  =  B )
1310, 12eqtrd 2226 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1o  .N  B
)  =  B )
148, 13breq12d 4043 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  1o )  <N  ( 1o 
.N  B )  <->  A  <N  B ) )
156, 14bitr2d 189 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  [ <. A ,  1o >. ]  ~Q  <Q  [
<. B ,  1o >. ]  ~Q  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   <.cop 3622   class class class wbr 4030  (class class class)co 5919   1oc1o 6464   [cec 6587   N.cnpi 7334    .N cmi 7336    <N clti 7337    ~Q ceq 7341    <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-lti 7369  df-enq 7409  df-nqqs 7410  df-ltnqqs 7415
This theorem is referenced by:  caucvgprlemk  7727  caucvgprprlemk  7745  ltrennb  7916
  Copyright terms: Public domain W3C validator