| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0breq | Unicode version | ||
| Description: Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| enq0breq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 5976 |
. . . . . 6
| |
| 2 | oveq12 5976 |
. . . . . 6
| |
| 3 | 1, 2 | eqeqan12d 2223 |
. . . . 5
|
| 4 | 3 | an42s 589 |
. . . 4
|
| 5 | 4 | copsex4g 4309 |
. . 3
|
| 6 | 5 | anbi2d 464 |
. 2
|
| 7 | opexg 4290 |
. . 3
| |
| 8 | opexg 4290 |
. . 3
| |
| 9 | eleq1 2270 |
. . . . . 6
| |
| 10 | 9 | anbi1d 465 |
. . . . 5
|
| 11 | eqeq1 2214 |
. . . . . . . 8
| |
| 12 | 11 | anbi1d 465 |
. . . . . . 7
|
| 13 | 12 | anbi1d 465 |
. . . . . 6
|
| 14 | 13 | 4exbidv 1894 |
. . . . 5
|
| 15 | 10, 14 | anbi12d 473 |
. . . 4
|
| 16 | eleq1 2270 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | eqeq1 2214 |
. . . . . . . 8
| |
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | 19 | anbi1d 465 |
. . . . . 6
|
| 21 | 20 | 4exbidv 1894 |
. . . . 5
|
| 22 | 17, 21 | anbi12d 473 |
. . . 4
|
| 23 | df-enq0 7572 |
. . . 4
| |
| 24 | 15, 22, 23 | brabg 4333 |
. . 3
|
| 25 | 7, 8, 24 | syl2an 289 |
. 2
|
| 26 | opelxpi 4725 |
. . . 4
| |
| 27 | opelxpi 4725 |
. . . 4
| |
| 28 | 26, 27 | anim12i 338 |
. . 3
|
| 29 | 28 | biantrurd 305 |
. 2
|
| 30 | 6, 25, 29 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-ov 5970 df-enq0 7572 |
| This theorem is referenced by: enq0eceq 7585 nqnq0pi 7586 addcmpblnq0 7591 mulcmpblnq0 7592 mulcanenq0ec 7593 nnnq0lem1 7594 |
| Copyright terms: Public domain | W3C validator |