| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0breq | Unicode version | ||
| Description: Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| enq0breq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 5953 |
. . . . . 6
| |
| 2 | oveq12 5953 |
. . . . . 6
| |
| 3 | 1, 2 | eqeqan12d 2221 |
. . . . 5
|
| 4 | 3 | an42s 589 |
. . . 4
|
| 5 | 4 | copsex4g 4291 |
. . 3
|
| 6 | 5 | anbi2d 464 |
. 2
|
| 7 | opexg 4272 |
. . 3
| |
| 8 | opexg 4272 |
. . 3
| |
| 9 | eleq1 2268 |
. . . . . 6
| |
| 10 | 9 | anbi1d 465 |
. . . . 5
|
| 11 | eqeq1 2212 |
. . . . . . . 8
| |
| 12 | 11 | anbi1d 465 |
. . . . . . 7
|
| 13 | 12 | anbi1d 465 |
. . . . . 6
|
| 14 | 13 | 4exbidv 1893 |
. . . . 5
|
| 15 | 10, 14 | anbi12d 473 |
. . . 4
|
| 16 | eleq1 2268 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | eqeq1 2212 |
. . . . . . . 8
| |
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | 19 | anbi1d 465 |
. . . . . 6
|
| 21 | 20 | 4exbidv 1893 |
. . . . 5
|
| 22 | 17, 21 | anbi12d 473 |
. . . 4
|
| 23 | df-enq0 7537 |
. . . 4
| |
| 24 | 15, 22, 23 | brabg 4315 |
. . 3
|
| 25 | 7, 8, 24 | syl2an 289 |
. 2
|
| 26 | opelxpi 4707 |
. . . 4
| |
| 27 | opelxpi 4707 |
. . . 4
| |
| 28 | 26, 27 | anim12i 338 |
. . 3
|
| 29 | 28 | biantrurd 305 |
. 2
|
| 30 | 6, 25, 29 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-iota 5232 df-fv 5279 df-ov 5947 df-enq0 7537 |
| This theorem is referenced by: enq0eceq 7550 nqnq0pi 7551 addcmpblnq0 7556 mulcmpblnq0 7557 mulcanenq0ec 7558 nnnq0lem1 7559 |
| Copyright terms: Public domain | W3C validator |