| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0breq | Unicode version | ||
| Description: Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| enq0breq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 5934 |
. . . . . 6
| |
| 2 | oveq12 5934 |
. . . . . 6
| |
| 3 | 1, 2 | eqeqan12d 2212 |
. . . . 5
|
| 4 | 3 | an42s 589 |
. . . 4
|
| 5 | 4 | copsex4g 4281 |
. . 3
|
| 6 | 5 | anbi2d 464 |
. 2
|
| 7 | opexg 4262 |
. . 3
| |
| 8 | opexg 4262 |
. . 3
| |
| 9 | eleq1 2259 |
. . . . . 6
| |
| 10 | 9 | anbi1d 465 |
. . . . 5
|
| 11 | eqeq1 2203 |
. . . . . . . 8
| |
| 12 | 11 | anbi1d 465 |
. . . . . . 7
|
| 13 | 12 | anbi1d 465 |
. . . . . 6
|
| 14 | 13 | 4exbidv 1884 |
. . . . 5
|
| 15 | 10, 14 | anbi12d 473 |
. . . 4
|
| 16 | eleq1 2259 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | eqeq1 2203 |
. . . . . . . 8
| |
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | 19 | anbi1d 465 |
. . . . . 6
|
| 21 | 20 | 4exbidv 1884 |
. . . . 5
|
| 22 | 17, 21 | anbi12d 473 |
. . . 4
|
| 23 | df-enq0 7508 |
. . . 4
| |
| 24 | 15, 22, 23 | brabg 4304 |
. . 3
|
| 25 | 7, 8, 24 | syl2an 289 |
. 2
|
| 26 | opelxpi 4696 |
. . . 4
| |
| 27 | opelxpi 4696 |
. . . 4
| |
| 28 | 26, 27 | anim12i 338 |
. . 3
|
| 29 | 28 | biantrurd 305 |
. 2
|
| 30 | 6, 25, 29 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-enq0 7508 |
| This theorem is referenced by: enq0eceq 7521 nqnq0pi 7522 addcmpblnq0 7527 mulcmpblnq0 7528 mulcanenq0ec 7529 nnnq0lem1 7530 |
| Copyright terms: Public domain | W3C validator |