| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0breq | Unicode version | ||
| Description: Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| enq0breq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 6010 |
. . . . . 6
| |
| 2 | oveq12 6010 |
. . . . . 6
| |
| 3 | 1, 2 | eqeqan12d 2245 |
. . . . 5
|
| 4 | 3 | an42s 591 |
. . . 4
|
| 5 | 4 | copsex4g 4333 |
. . 3
|
| 6 | 5 | anbi2d 464 |
. 2
|
| 7 | opexg 4314 |
. . 3
| |
| 8 | opexg 4314 |
. . 3
| |
| 9 | eleq1 2292 |
. . . . . 6
| |
| 10 | 9 | anbi1d 465 |
. . . . 5
|
| 11 | eqeq1 2236 |
. . . . . . . 8
| |
| 12 | 11 | anbi1d 465 |
. . . . . . 7
|
| 13 | 12 | anbi1d 465 |
. . . . . 6
|
| 14 | 13 | 4exbidv 1916 |
. . . . 5
|
| 15 | 10, 14 | anbi12d 473 |
. . . 4
|
| 16 | eleq1 2292 |
. . . . . 6
| |
| 17 | 16 | anbi2d 464 |
. . . . 5
|
| 18 | eqeq1 2236 |
. . . . . . . 8
| |
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | 19 | anbi1d 465 |
. . . . . 6
|
| 21 | 20 | 4exbidv 1916 |
. . . . 5
|
| 22 | 17, 21 | anbi12d 473 |
. . . 4
|
| 23 | df-enq0 7611 |
. . . 4
| |
| 24 | 15, 22, 23 | brabg 4357 |
. . 3
|
| 25 | 7, 8, 24 | syl2an 289 |
. 2
|
| 26 | opelxpi 4751 |
. . . 4
| |
| 27 | opelxpi 4751 |
. . . 4
| |
| 28 | 26, 27 | anim12i 338 |
. . 3
|
| 29 | 28 | biantrurd 305 |
. 2
|
| 30 | 6, 25, 29 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6004 df-enq0 7611 |
| This theorem is referenced by: enq0eceq 7624 nqnq0pi 7625 addcmpblnq0 7630 mulcmpblnq0 7631 mulcanenq0ec 7632 nnnq0lem1 7633 |
| Copyright terms: Public domain | W3C validator |