Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enq0breq | Unicode version |
Description: Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
enq0breq | ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 5862 | . . . . . 6 | |
2 | oveq12 5862 | . . . . . 6 | |
3 | 1, 2 | eqeqan12d 2186 | . . . . 5 |
4 | 3 | an42s 584 | . . . 4 |
5 | 4 | copsex4g 4232 | . . 3 |
6 | 5 | anbi2d 461 | . 2 |
7 | opexg 4213 | . . 3 | |
8 | opexg 4213 | . . 3 | |
9 | eleq1 2233 | . . . . . 6 | |
10 | 9 | anbi1d 462 | . . . . 5 |
11 | eqeq1 2177 | . . . . . . . 8 | |
12 | 11 | anbi1d 462 | . . . . . . 7 |
13 | 12 | anbi1d 462 | . . . . . 6 |
14 | 13 | 4exbidv 1863 | . . . . 5 |
15 | 10, 14 | anbi12d 470 | . . . 4 |
16 | eleq1 2233 | . . . . . 6 | |
17 | 16 | anbi2d 461 | . . . . 5 |
18 | eqeq1 2177 | . . . . . . . 8 | |
19 | 18 | anbi2d 461 | . . . . . . 7 |
20 | 19 | anbi1d 462 | . . . . . 6 |
21 | 20 | 4exbidv 1863 | . . . . 5 |
22 | 17, 21 | anbi12d 470 | . . . 4 |
23 | df-enq0 7386 | . . . 4 ~Q0 | |
24 | 15, 22, 23 | brabg 4254 | . . 3 ~Q0 |
25 | 7, 8, 24 | syl2an 287 | . 2 ~Q0 |
26 | opelxpi 4643 | . . . 4 | |
27 | opelxpi 4643 | . . . 4 | |
28 | 26, 27 | anim12i 336 | . . 3 |
29 | 28 | biantrurd 303 | . 2 |
30 | 6, 25, 29 | 3bitr4d 219 | 1 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 cop 3586 class class class wbr 3989 com 4574 cxp 4609 (class class class)co 5853 comu 6393 cnpi 7234 ~Q0 ceq0 7248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-iota 5160 df-fv 5206 df-ov 5856 df-enq0 7386 |
This theorem is referenced by: enq0eceq 7399 nqnq0pi 7400 addcmpblnq0 7405 mulcmpblnq0 7406 mulcanenq0ec 7407 nnnq0lem1 7408 |
Copyright terms: Public domain | W3C validator |