Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enq0er | Unicode version |
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
Ref | Expression |
---|---|
enq0er | ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enq0 7398 | . . . . 5 ~Q0 | |
2 | 1 | relopabi 4746 | . . . 4 ~Q0 |
3 | 2 | a1i 9 | . . 3 ~Q0 |
4 | enq0sym 7406 | . . . 4 ~Q0 ~Q0 | |
5 | 4 | adantl 277 | . . 3 ~Q0 ~Q0 |
6 | enq0tr 7408 | . . . 4 ~Q0 ~Q0 ~Q0 | |
7 | 6 | adantl 277 | . . 3 ~Q0 ~Q0 ~Q0 |
8 | enq0ref 7407 | . . . 4 ~Q0 | |
9 | 8 | a1i 9 | . . 3 ~Q0 |
10 | 3, 5, 7, 9 | iserd 6551 | . 2 ~Q0 |
11 | 10 | mptru 1362 | 1 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wceq 1353 wtru 1354 wex 1490 wcel 2146 cop 3592 class class class wbr 3998 com 4583 cxp 4618 wrel 4625 (class class class)co 5865 comu 6405 wer 6522 cnpi 7246 ~Q0 ceq0 7260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-oadd 6411 df-omul 6412 df-er 6525 df-ni 7278 df-enq0 7398 |
This theorem is referenced by: enq0eceq 7411 nqnq0pi 7412 mulcanenq0ec 7419 nnnq0lem1 7420 addnq0mo 7421 mulnq0mo 7422 |
Copyright terms: Public domain | W3C validator |