ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0er Unicode version

Theorem enq0er 7236
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0er  |- ~Q0  Er  ( om  X.  N. )

Proof of Theorem enq0er
Dummy variables  f  g  h  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 7225 . . . . 5  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
21relopabi 4660 . . . 4  |-  Rel ~Q0
32a1i 9 . . 3  |-  ( T. 
->  Rel ~Q0  )
4 enq0sym 7233 . . . 4  |-  ( f ~Q0  g  ->  g ~Q0  f )
54adantl 275 . . 3  |-  ( ( T.  /\  f ~Q0  g )  ->  g ~Q0  f )
6 enq0tr 7235 . . . 4  |-  ( ( f ~Q0  g  /\  g ~Q0  h )  ->  f ~Q0  h )
76adantl 275 . . 3  |-  ( ( T.  /\  ( f ~Q0  g  /\  g ~Q0  h ) )  -> 
f ~Q0  h )
8 enq0ref 7234 . . . 4  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )
98a1i 9 . . 3  |-  ( T. 
->  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f
) )
103, 5, 7, 9iserd 6448 . 2  |-  ( T. 
-> ~Q0  Er  ( om  X.  N. ) )
1110mptru 1340 1  |- ~Q0  Er  ( om  X.  N. )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   T. wtru 1332   E.wex 1468    e. wcel 1480   <.cop 3525   class class class wbr 3924   omcom 4499    X. cxp 4532   Rel wrel 4539  (class class class)co 5767    .o comu 6304    Er wer 6419   N.cnpi 7073   ~Q0 ceq0 7087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311  df-er 6422  df-ni 7105  df-enq0 7225
This theorem is referenced by:  enq0eceq  7238  nqnq0pi  7239  mulcanenq0ec  7246  nnnq0lem1  7247  addnq0mo  7248  mulnq0mo  7249
  Copyright terms: Public domain W3C validator