ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0er Unicode version

Theorem enq0er 7497
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0er  |- ~Q0  Er  ( om  X.  N. )

Proof of Theorem enq0er
Dummy variables  f  g  h  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 7486 . . . . 5  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
21relopabi 4788 . . . 4  |-  Rel ~Q0
32a1i 9 . . 3  |-  ( T. 
->  Rel ~Q0  )
4 enq0sym 7494 . . . 4  |-  ( f ~Q0  g  ->  g ~Q0  f )
54adantl 277 . . 3  |-  ( ( T.  /\  f ~Q0  g )  ->  g ~Q0  f )
6 enq0tr 7496 . . . 4  |-  ( ( f ~Q0  g  /\  g ~Q0  h )  ->  f ~Q0  h )
76adantl 277 . . 3  |-  ( ( T.  /\  ( f ~Q0  g  /\  g ~Q0  h ) )  -> 
f ~Q0  h )
8 enq0ref 7495 . . . 4  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )
98a1i 9 . . 3  |-  ( T. 
->  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f
) )
103, 5, 7, 9iserd 6615 . 2  |-  ( T. 
-> ~Q0  Er  ( om  X.  N. ) )
1110mptru 1373 1  |- ~Q0  Er  ( om  X.  N. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365   E.wex 1503    e. wcel 2164   <.cop 3622   class class class wbr 4030   omcom 4623    X. cxp 4658   Rel wrel 4665  (class class class)co 5919    .o comu 6469    Er wer 6586   N.cnpi 7334   ~Q0 ceq0 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-er 6589  df-ni 7366  df-enq0 7486
This theorem is referenced by:  enq0eceq  7499  nqnq0pi  7500  mulcanenq0ec  7507  nnnq0lem1  7508  addnq0mo  7509  mulnq0mo  7510
  Copyright terms: Public domain W3C validator