ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0er Unicode version

Theorem enq0er 7618
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0er  |- ~Q0  Er  ( om  X.  N. )

Proof of Theorem enq0er
Dummy variables  f  g  h  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 7607 . . . . 5  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
21relopabi 4846 . . . 4  |-  Rel ~Q0
32a1i 9 . . 3  |-  ( T. 
->  Rel ~Q0  )
4 enq0sym 7615 . . . 4  |-  ( f ~Q0  g  ->  g ~Q0  f )
54adantl 277 . . 3  |-  ( ( T.  /\  f ~Q0  g )  ->  g ~Q0  f )
6 enq0tr 7617 . . . 4  |-  ( ( f ~Q0  g  /\  g ~Q0  h )  ->  f ~Q0  h )
76adantl 277 . . 3  |-  ( ( T.  /\  ( f ~Q0  g  /\  g ~Q0  h ) )  -> 
f ~Q0  h )
8 enq0ref 7616 . . . 4  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )
98a1i 9 . . 3  |-  ( T. 
->  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f
) )
103, 5, 7, 9iserd 6704 . 2  |-  ( T. 
-> ~Q0  Er  ( om  X.  N. ) )
1110mptru 1404 1  |- ~Q0  Er  ( om  X.  N. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   T. wtru 1396   E.wex 1538    e. wcel 2200   <.cop 3669   class class class wbr 4082   omcom 4681    X. cxp 4716   Rel wrel 4723  (class class class)co 6000    .o comu 6558    Er wer 6675   N.cnpi 7455   ~Q0 ceq0 7469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ni 7487  df-enq0 7607
This theorem is referenced by:  enq0eceq  7620  nqnq0pi  7621  mulcanenq0ec  7628  nnnq0lem1  7629  addnq0mo  7630  mulnq0mo  7631
  Copyright terms: Public domain W3C validator