| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0ref | Unicode version | ||
| Description: The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7563. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0ref |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxpi 4698 |
. . . . . 6
| |
| 2 | elxpi 4698 |
. . . . . 6
| |
| 3 | ee4anv 1963 |
. . . . . 6
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
. . . . 5
|
| 5 | eqtr2 2225 |
. . . . . . . . . . . 12
| |
| 6 | vex 2776 |
. . . . . . . . . . . . 13
| |
| 7 | vex 2776 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | opth 4288 |
. . . . . . . . . . . 12
|
| 9 | 5, 8 | sylib 122 |
. . . . . . . . . . 11
|
| 10 | oveq1 5963 |
. . . . . . . . . . . 12
| |
| 11 | oveq2 5964 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | equcoms 1732 |
. . . . . . . . . . . 12
|
| 13 | 10, 12 | sylan9eq 2259 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syl 14 |
. . . . . . . . . 10
|
| 15 | 14 | ancli 323 |
. . . . . . . . 9
|
| 16 | 15 | ad2ant2r 509 |
. . . . . . . 8
|
| 17 | pinn 7437 |
. . . . . . . . . . . . . 14
| |
| 18 | nnmcom 6587 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 18 | sylan2 286 |
. . . . . . . . . . . . 13
|
| 20 | 19 | eqeq2d 2218 |
. . . . . . . . . . . 12
|
| 21 | 20 | ancoms 268 |
. . . . . . . . . . 11
|
| 22 | 21 | ad2ant2lr 510 |
. . . . . . . . . 10
|
| 23 | 22 | ad2ant2l 508 |
. . . . . . . . 9
|
| 24 | 23 | anbi2d 464 |
. . . . . . . 8
|
| 25 | 16, 24 | mpbid 147 |
. . . . . . 7
|
| 26 | 25 | 2eximi 1625 |
. . . . . 6
|
| 27 | 26 | 2eximi 1625 |
. . . . 5
|
| 28 | 4, 27 | syl 14 |
. . . 4
|
| 29 | 28 | ancli 323 |
. . 3
|
| 30 | vex 2776 |
. . . . 5
| |
| 31 | eleq1 2269 |
. . . . . . 7
| |
| 32 | 31 | anbi1d 465 |
. . . . . 6
|
| 33 | eqeq1 2213 |
. . . . . . . . 9
| |
| 34 | 33 | anbi1d 465 |
. . . . . . . 8
|
| 35 | 34 | anbi1d 465 |
. . . . . . 7
|
| 36 | 35 | 4exbidv 1894 |
. . . . . 6
|
| 37 | 32, 36 | anbi12d 473 |
. . . . 5
|
| 38 | eleq1 2269 |
. . . . . . 7
| |
| 39 | 38 | anbi2d 464 |
. . . . . 6
|
| 40 | eqeq1 2213 |
. . . . . . . . 9
| |
| 41 | 40 | anbi2d 464 |
. . . . . . . 8
|
| 42 | 41 | anbi1d 465 |
. . . . . . 7
|
| 43 | 42 | 4exbidv 1894 |
. . . . . 6
|
| 44 | 39, 43 | anbi12d 473 |
. . . . 5
|
| 45 | df-enq0 7552 |
. . . . 5
| |
| 46 | 30, 30, 37, 44, 45 | brab 4326 |
. . . 4
|
| 47 | anidm 396 |
. . . . 5
| |
| 48 | 47 | anbi1i 458 |
. . . 4
|
| 49 | 46, 48 | bitri 184 |
. . 3
|
| 50 | 29, 49 | sylibr 134 |
. 2
|
| 51 | 49 | simplbi 274 |
. 2
|
| 52 | 50, 51 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-oadd 6518 df-omul 6519 df-ni 7432 df-enq0 7552 |
| This theorem is referenced by: enq0er 7563 |
| Copyright terms: Public domain | W3C validator |