Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enq0ref | Unicode version |
Description: The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7397. (Contributed by Jim Kingdon, 14-Nov-2019.) |
Ref | Expression |
---|---|
enq0ref | ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxpi 4627 | . . . . . 6 | |
2 | elxpi 4627 | . . . . . 6 | |
3 | ee4anv 1927 | . . . . . 6 | |
4 | 1, 2, 3 | sylanbrc 415 | . . . . 5 |
5 | eqtr2 2189 | . . . . . . . . . . . 12 | |
6 | vex 2733 | . . . . . . . . . . . . 13 | |
7 | vex 2733 | . . . . . . . . . . . . 13 | |
8 | 6, 7 | opth 4222 | . . . . . . . . . . . 12 |
9 | 5, 8 | sylib 121 | . . . . . . . . . . 11 |
10 | oveq1 5860 | . . . . . . . . . . . 12 | |
11 | oveq2 5861 | . . . . . . . . . . . . 13 | |
12 | 11 | equcoms 1701 | . . . . . . . . . . . 12 |
13 | 10, 12 | sylan9eq 2223 | . . . . . . . . . . 11 |
14 | 9, 13 | syl 14 | . . . . . . . . . 10 |
15 | 14 | ancli 321 | . . . . . . . . 9 |
16 | 15 | ad2ant2r 506 | . . . . . . . 8 |
17 | pinn 7271 | . . . . . . . . . . . . . 14 | |
18 | nnmcom 6468 | . . . . . . . . . . . . . 14 | |
19 | 17, 18 | sylan2 284 | . . . . . . . . . . . . 13 |
20 | 19 | eqeq2d 2182 | . . . . . . . . . . . 12 |
21 | 20 | ancoms 266 | . . . . . . . . . . 11 |
22 | 21 | ad2ant2lr 507 | . . . . . . . . . 10 |
23 | 22 | ad2ant2l 505 | . . . . . . . . 9 |
24 | 23 | anbi2d 461 | . . . . . . . 8 |
25 | 16, 24 | mpbid 146 | . . . . . . 7 |
26 | 25 | 2eximi 1594 | . . . . . 6 |
27 | 26 | 2eximi 1594 | . . . . 5 |
28 | 4, 27 | syl 14 | . . . 4 |
29 | 28 | ancli 321 | . . 3 |
30 | vex 2733 | . . . . 5 | |
31 | eleq1 2233 | . . . . . . 7 | |
32 | 31 | anbi1d 462 | . . . . . 6 |
33 | eqeq1 2177 | . . . . . . . . 9 | |
34 | 33 | anbi1d 462 | . . . . . . . 8 |
35 | 34 | anbi1d 462 | . . . . . . 7 |
36 | 35 | 4exbidv 1863 | . . . . . 6 |
37 | 32, 36 | anbi12d 470 | . . . . 5 |
38 | eleq1 2233 | . . . . . . 7 | |
39 | 38 | anbi2d 461 | . . . . . 6 |
40 | eqeq1 2177 | . . . . . . . . 9 | |
41 | 40 | anbi2d 461 | . . . . . . . 8 |
42 | 41 | anbi1d 462 | . . . . . . 7 |
43 | 42 | 4exbidv 1863 | . . . . . 6 |
44 | 39, 43 | anbi12d 470 | . . . . 5 |
45 | df-enq0 7386 | . . . . 5 ~Q0 | |
46 | 30, 30, 37, 44, 45 | brab 4257 | . . . 4 ~Q0 |
47 | anidm 394 | . . . . 5 | |
48 | 47 | anbi1i 455 | . . . 4 |
49 | 46, 48 | bitri 183 | . . 3 ~Q0 |
50 | 29, 49 | sylibr 133 | . 2 ~Q0 |
51 | 49 | simplbi 272 | . 2 ~Q0 |
52 | 50, 51 | impbii 125 | 1 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cop 3586 class class class wbr 3989 com 4574 cxp 4609 (class class class)co 5853 comu 6393 cnpi 7234 ~Q0 ceq0 7248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-ni 7266 df-enq0 7386 |
This theorem is referenced by: enq0er 7397 |
Copyright terms: Public domain | W3C validator |