| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0ref | Unicode version | ||
| Description: The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7519. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0ref |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxpi 4680 |
. . . . . 6
| |
| 2 | elxpi 4680 |
. . . . . 6
| |
| 3 | ee4anv 1953 |
. . . . . 6
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
. . . . 5
|
| 5 | eqtr2 2215 |
. . . . . . . . . . . 12
| |
| 6 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 7 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | opth 4271 |
. . . . . . . . . . . 12
|
| 9 | 5, 8 | sylib 122 |
. . . . . . . . . . 11
|
| 10 | oveq1 5932 |
. . . . . . . . . . . 12
| |
| 11 | oveq2 5933 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | equcoms 1722 |
. . . . . . . . . . . 12
|
| 13 | 10, 12 | sylan9eq 2249 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syl 14 |
. . . . . . . . . 10
|
| 15 | 14 | ancli 323 |
. . . . . . . . 9
|
| 16 | 15 | ad2ant2r 509 |
. . . . . . . 8
|
| 17 | pinn 7393 |
. . . . . . . . . . . . . 14
| |
| 18 | nnmcom 6556 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 18 | sylan2 286 |
. . . . . . . . . . . . 13
|
| 20 | 19 | eqeq2d 2208 |
. . . . . . . . . . . 12
|
| 21 | 20 | ancoms 268 |
. . . . . . . . . . 11
|
| 22 | 21 | ad2ant2lr 510 |
. . . . . . . . . 10
|
| 23 | 22 | ad2ant2l 508 |
. . . . . . . . 9
|
| 24 | 23 | anbi2d 464 |
. . . . . . . 8
|
| 25 | 16, 24 | mpbid 147 |
. . . . . . 7
|
| 26 | 25 | 2eximi 1615 |
. . . . . 6
|
| 27 | 26 | 2eximi 1615 |
. . . . 5
|
| 28 | 4, 27 | syl 14 |
. . . 4
|
| 29 | 28 | ancli 323 |
. . 3
|
| 30 | vex 2766 |
. . . . 5
| |
| 31 | eleq1 2259 |
. . . . . . 7
| |
| 32 | 31 | anbi1d 465 |
. . . . . 6
|
| 33 | eqeq1 2203 |
. . . . . . . . 9
| |
| 34 | 33 | anbi1d 465 |
. . . . . . . 8
|
| 35 | 34 | anbi1d 465 |
. . . . . . 7
|
| 36 | 35 | 4exbidv 1884 |
. . . . . 6
|
| 37 | 32, 36 | anbi12d 473 |
. . . . 5
|
| 38 | eleq1 2259 |
. . . . . . 7
| |
| 39 | 38 | anbi2d 464 |
. . . . . 6
|
| 40 | eqeq1 2203 |
. . . . . . . . 9
| |
| 41 | 40 | anbi2d 464 |
. . . . . . . 8
|
| 42 | 41 | anbi1d 465 |
. . . . . . 7
|
| 43 | 42 | 4exbidv 1884 |
. . . . . 6
|
| 44 | 39, 43 | anbi12d 473 |
. . . . 5
|
| 45 | df-enq0 7508 |
. . . . 5
| |
| 46 | 30, 30, 37, 44, 45 | brab 4308 |
. . . 4
|
| 47 | anidm 396 |
. . . . 5
| |
| 48 | 47 | anbi1i 458 |
. . . 4
|
| 49 | 46, 48 | bitri 184 |
. . 3
|
| 50 | 29, 49 | sylibr 134 |
. 2
|
| 51 | 49 | simplbi 274 |
. 2
|
| 52 | 50, 51 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-oadd 6487 df-omul 6488 df-ni 7388 df-enq0 7508 |
| This theorem is referenced by: enq0er 7519 |
| Copyright terms: Public domain | W3C validator |