Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enq0ref | Unicode version |
Description: The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7334. (Contributed by Jim Kingdon, 14-Nov-2019.) |
Ref | Expression |
---|---|
enq0ref | ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxpi 4595 | . . . . . 6 | |
2 | elxpi 4595 | . . . . . 6 | |
3 | ee4anv 1911 | . . . . . 6 | |
4 | 1, 2, 3 | sylanbrc 414 | . . . . 5 |
5 | eqtr2 2173 | . . . . . . . . . . . 12 | |
6 | vex 2712 | . . . . . . . . . . . . 13 | |
7 | vex 2712 | . . . . . . . . . . . . 13 | |
8 | 6, 7 | opth 4192 | . . . . . . . . . . . 12 |
9 | 5, 8 | sylib 121 | . . . . . . . . . . 11 |
10 | oveq1 5821 | . . . . . . . . . . . 12 | |
11 | oveq2 5822 | . . . . . . . . . . . . 13 | |
12 | 11 | equcoms 1685 | . . . . . . . . . . . 12 |
13 | 10, 12 | sylan9eq 2207 | . . . . . . . . . . 11 |
14 | 9, 13 | syl 14 | . . . . . . . . . 10 |
15 | 14 | ancli 321 | . . . . . . . . 9 |
16 | 15 | ad2ant2r 501 | . . . . . . . 8 |
17 | pinn 7208 | . . . . . . . . . . . . . 14 | |
18 | nnmcom 6425 | . . . . . . . . . . . . . 14 | |
19 | 17, 18 | sylan2 284 | . . . . . . . . . . . . 13 |
20 | 19 | eqeq2d 2166 | . . . . . . . . . . . 12 |
21 | 20 | ancoms 266 | . . . . . . . . . . 11 |
22 | 21 | ad2ant2lr 502 | . . . . . . . . . 10 |
23 | 22 | ad2ant2l 500 | . . . . . . . . 9 |
24 | 23 | anbi2d 460 | . . . . . . . 8 |
25 | 16, 24 | mpbid 146 | . . . . . . 7 |
26 | 25 | 2eximi 1578 | . . . . . 6 |
27 | 26 | 2eximi 1578 | . . . . 5 |
28 | 4, 27 | syl 14 | . . . 4 |
29 | 28 | ancli 321 | . . 3 |
30 | vex 2712 | . . . . 5 | |
31 | eleq1 2217 | . . . . . . 7 | |
32 | 31 | anbi1d 461 | . . . . . 6 |
33 | eqeq1 2161 | . . . . . . . . 9 | |
34 | 33 | anbi1d 461 | . . . . . . . 8 |
35 | 34 | anbi1d 461 | . . . . . . 7 |
36 | 35 | 4exbidv 1847 | . . . . . 6 |
37 | 32, 36 | anbi12d 465 | . . . . 5 |
38 | eleq1 2217 | . . . . . . 7 | |
39 | 38 | anbi2d 460 | . . . . . 6 |
40 | eqeq1 2161 | . . . . . . . . 9 | |
41 | 40 | anbi2d 460 | . . . . . . . 8 |
42 | 41 | anbi1d 461 | . . . . . . 7 |
43 | 42 | 4exbidv 1847 | . . . . . 6 |
44 | 39, 43 | anbi12d 465 | . . . . 5 |
45 | df-enq0 7323 | . . . . 5 ~Q0 | |
46 | 30, 30, 37, 44, 45 | brab 4227 | . . . 4 ~Q0 |
47 | anidm 394 | . . . . 5 | |
48 | 47 | anbi1i 454 | . . . 4 |
49 | 46, 48 | bitri 183 | . . 3 ~Q0 |
50 | 29, 49 | sylibr 133 | . 2 ~Q0 |
51 | 49 | simplbi 272 | . 2 ~Q0 |
52 | 50, 51 | impbii 125 | 1 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1332 wex 1469 wcel 2125 cop 3559 class class class wbr 3961 com 4543 cxp 4577 (class class class)co 5814 comu 6351 cnpi 7171 ~Q0 ceq0 7185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-oadd 6357 df-omul 6358 df-ni 7203 df-enq0 7323 |
This theorem is referenced by: enq0er 7334 |
Copyright terms: Public domain | W3C validator |