| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0ref | Unicode version | ||
| Description: The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7610. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0ref |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxpi 4732 |
. . . . . 6
| |
| 2 | elxpi 4732 |
. . . . . 6
| |
| 3 | ee4anv 1985 |
. . . . . 6
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
. . . . 5
|
| 5 | eqtr2 2248 |
. . . . . . . . . . . 12
| |
| 6 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 7 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | opth 4322 |
. . . . . . . . . . . 12
|
| 9 | 5, 8 | sylib 122 |
. . . . . . . . . . 11
|
| 10 | oveq1 6001 |
. . . . . . . . . . . 12
| |
| 11 | oveq2 6002 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | equcoms 1754 |
. . . . . . . . . . . 12
|
| 13 | 10, 12 | sylan9eq 2282 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syl 14 |
. . . . . . . . . 10
|
| 15 | 14 | ancli 323 |
. . . . . . . . 9
|
| 16 | 15 | ad2ant2r 509 |
. . . . . . . 8
|
| 17 | pinn 7484 |
. . . . . . . . . . . . . 14
| |
| 18 | nnmcom 6625 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 18 | sylan2 286 |
. . . . . . . . . . . . 13
|
| 20 | 19 | eqeq2d 2241 |
. . . . . . . . . . . 12
|
| 21 | 20 | ancoms 268 |
. . . . . . . . . . 11
|
| 22 | 21 | ad2ant2lr 510 |
. . . . . . . . . 10
|
| 23 | 22 | ad2ant2l 508 |
. . . . . . . . 9
|
| 24 | 23 | anbi2d 464 |
. . . . . . . 8
|
| 25 | 16, 24 | mpbid 147 |
. . . . . . 7
|
| 26 | 25 | 2eximi 1647 |
. . . . . 6
|
| 27 | 26 | 2eximi 1647 |
. . . . 5
|
| 28 | 4, 27 | syl 14 |
. . . 4
|
| 29 | 28 | ancli 323 |
. . 3
|
| 30 | vex 2802 |
. . . . 5
| |
| 31 | eleq1 2292 |
. . . . . . 7
| |
| 32 | 31 | anbi1d 465 |
. . . . . 6
|
| 33 | eqeq1 2236 |
. . . . . . . . 9
| |
| 34 | 33 | anbi1d 465 |
. . . . . . . 8
|
| 35 | 34 | anbi1d 465 |
. . . . . . 7
|
| 36 | 35 | 4exbidv 1916 |
. . . . . 6
|
| 37 | 32, 36 | anbi12d 473 |
. . . . 5
|
| 38 | eleq1 2292 |
. . . . . . 7
| |
| 39 | 38 | anbi2d 464 |
. . . . . 6
|
| 40 | eqeq1 2236 |
. . . . . . . . 9
| |
| 41 | 40 | anbi2d 464 |
. . . . . . . 8
|
| 42 | 41 | anbi1d 465 |
. . . . . . 7
|
| 43 | 42 | 4exbidv 1916 |
. . . . . 6
|
| 44 | 39, 43 | anbi12d 473 |
. . . . 5
|
| 45 | df-enq0 7599 |
. . . . 5
| |
| 46 | 30, 30, 37, 44, 45 | brab 4360 |
. . . 4
|
| 47 | anidm 396 |
. . . . 5
| |
| 48 | 47 | anbi1i 458 |
. . . 4
|
| 49 | 46, 48 | bitri 184 |
. . 3
|
| 50 | 29, 49 | sylibr 134 |
. 2
|
| 51 | 49 | simplbi 274 |
. 2
|
| 52 | 50, 51 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-oadd 6556 df-omul 6557 df-ni 7479 df-enq0 7599 |
| This theorem is referenced by: enq0er 7610 |
| Copyright terms: Public domain | W3C validator |