ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersym Unicode version

Theorem ersym 6441
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ersym  |-  ( ph  ->  B R A )

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3  |-  ( ph  ->  A R B )
2 ersym.1 . . . . . 6  |-  ( ph  ->  R  Er  X )
3 errel 6438 . . . . . 6  |-  ( R  Er  X  ->  Rel  R )
42, 3syl 14 . . . . 5  |-  ( ph  ->  Rel  R )
5 brrelex12 4577 . . . . 5  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
64, 1, 5syl2anc 408 . . . 4  |-  ( ph  ->  ( A  e.  _V  /\  B  e.  _V )
)
7 brcnvg 4720 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
87ancoms 266 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
96, 8syl 14 . . 3  |-  ( ph  ->  ( B `' R A 
<->  A R B ) )
101, 9mpbird 166 . 2  |-  ( ph  ->  B `' R A )
11 df-er 6429 . . . . . 6  |-  ( R  Er  X  <->  ( Rel  R  /\  dom  R  =  X  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
1211simp3bi 998 . . . . 5  |-  ( R  Er  X  ->  ( `' R  u.  ( R  o.  R )
)  C_  R )
132, 12syl 14 . . . 4  |-  ( ph  ->  ( `' R  u.  ( R  o.  R
) )  C_  R
)
1413unssad 3253 . . 3  |-  ( ph  ->  `' R  C_  R )
1514ssbrd 3971 . 2  |-  ( ph  ->  ( B `' R A  ->  B R A ) )
1610, 15mpd 13 1  |-  ( ph  ->  B R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2686    u. cun 3069    C_ wss 3071   class class class wbr 3929   `'ccnv 4538   dom cdm 4539    o. ccom 4543   Rel wrel 4544    Er wer 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-er 6429
This theorem is referenced by:  ercl2  6442  ersymb  6443  ertr2d  6446  ertr3d  6447  ertr4d  6448  erth  6473  erinxp  6503
  Copyright terms: Public domain W3C validator