ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersym Unicode version

Theorem ersym 6604
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ersym  |-  ( ph  ->  B R A )

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3  |-  ( ph  ->  A R B )
2 ersym.1 . . . . . 6  |-  ( ph  ->  R  Er  X )
3 errel 6601 . . . . . 6  |-  ( R  Er  X  ->  Rel  R )
42, 3syl 14 . . . . 5  |-  ( ph  ->  Rel  R )
5 brrelex12 4701 . . . . 5  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
64, 1, 5syl2anc 411 . . . 4  |-  ( ph  ->  ( A  e.  _V  /\  B  e.  _V )
)
7 brcnvg 4847 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
87ancoms 268 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
96, 8syl 14 . . 3  |-  ( ph  ->  ( B `' R A 
<->  A R B ) )
101, 9mpbird 167 . 2  |-  ( ph  ->  B `' R A )
11 df-er 6592 . . . . . 6  |-  ( R  Er  X  <->  ( Rel  R  /\  dom  R  =  X  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
1211simp3bi 1016 . . . . 5  |-  ( R  Er  X  ->  ( `' R  u.  ( R  o.  R )
)  C_  R )
132, 12syl 14 . . . 4  |-  ( ph  ->  ( `' R  u.  ( R  o.  R
) )  C_  R
)
1413unssad 3340 . . 3  |-  ( ph  ->  `' R  C_  R )
1514ssbrd 4076 . 2  |-  ( ph  ->  ( B `' R A  ->  B R A ) )
1610, 15mpd 13 1  |-  ( ph  ->  B R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155    C_ wss 3157   class class class wbr 4033   `'ccnv 4662   dom cdm 4663    o. ccom 4667   Rel wrel 4668    Er wer 6589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-er 6592
This theorem is referenced by:  ercl2  6605  ersymb  6606  ertr2d  6609  ertr3d  6610  ertr4d  6611  erth  6638  erinxp  6668  qusgrp2  13243  2idlcpblrng  14079
  Copyright terms: Public domain W3C validator