Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ersym | Unicode version |
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersym.1 | |
ersym.2 |
Ref | Expression |
---|---|
ersym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersym.2 | . . 3 | |
2 | ersym.1 | . . . . . 6 | |
3 | errel 6522 | . . . . . 6 | |
4 | 2, 3 | syl 14 | . . . . 5 |
5 | brrelex12 4649 | . . . . 5 | |
6 | 4, 1, 5 | syl2anc 409 | . . . 4 |
7 | brcnvg 4792 | . . . . 5 | |
8 | 7 | ancoms 266 | . . . 4 |
9 | 6, 8 | syl 14 | . . 3 |
10 | 1, 9 | mpbird 166 | . 2 |
11 | df-er 6513 | . . . . . 6 | |
12 | 11 | simp3bi 1009 | . . . . 5 |
13 | 2, 12 | syl 14 | . . . 4 |
14 | 13 | unssad 3304 | . . 3 |
15 | 14 | ssbrd 4032 | . 2 |
16 | 10, 15 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 cun 3119 wss 3121 class class class wbr 3989 ccnv 4610 cdm 4611 ccom 4615 wrel 4616 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-er 6513 |
This theorem is referenced by: ercl2 6526 ersymb 6527 ertr2d 6530 ertr3d 6531 ertr4d 6532 erth 6557 erinxp 6587 |
Copyright terms: Public domain | W3C validator |