ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersym Unicode version

Theorem ersym 6655
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ersym  |-  ( ph  ->  B R A )

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3  |-  ( ph  ->  A R B )
2 ersym.1 . . . . . 6  |-  ( ph  ->  R  Er  X )
3 errel 6652 . . . . . 6  |-  ( R  Er  X  ->  Rel  R )
42, 3syl 14 . . . . 5  |-  ( ph  ->  Rel  R )
5 brrelex12 4731 . . . . 5  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
64, 1, 5syl2anc 411 . . . 4  |-  ( ph  ->  ( A  e.  _V  /\  B  e.  _V )
)
7 brcnvg 4877 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
87ancoms 268 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B `' R A 
<->  A R B ) )
96, 8syl 14 . . 3  |-  ( ph  ->  ( B `' R A 
<->  A R B ) )
101, 9mpbird 167 . 2  |-  ( ph  ->  B `' R A )
11 df-er 6643 . . . . . 6  |-  ( R  Er  X  <->  ( Rel  R  /\  dom  R  =  X  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
1211simp3bi 1017 . . . . 5  |-  ( R  Er  X  ->  ( `' R  u.  ( R  o.  R )
)  C_  R )
132, 12syl 14 . . . 4  |-  ( ph  ->  ( `' R  u.  ( R  o.  R
) )  C_  R
)
1413unssad 3358 . . 3  |-  ( ph  ->  `' R  C_  R )
1514ssbrd 4102 . 2  |-  ( ph  ->  ( B `' R A  ->  B R A ) )
1610, 15mpd 13 1  |-  ( ph  ->  B R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172    C_ wss 3174   class class class wbr 4059   `'ccnv 4692   dom cdm 4693    o. ccom 4697   Rel wrel 4698    Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-er 6643
This theorem is referenced by:  ercl2  6656  ersymb  6657  ertr2d  6660  ertr3d  6661  ertr4d  6662  erth  6689  erinxp  6719  qusgrp2  13564  2idlcpblrng  14400
  Copyright terms: Public domain W3C validator