ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersymb Unicode version

Theorem ersymb 6636
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
Assertion
Ref Expression
ersymb  |-  ( ph  ->  ( A R B  <-> 
B R A ) )

Proof of Theorem ersymb
StepHypRef Expression
1 ersymb.1 . . . 4  |-  ( ph  ->  R  Er  X )
21adantr 276 . . 3  |-  ( (
ph  /\  A R B )  ->  R  Er  X )
3 simpr 110 . . 3  |-  ( (
ph  /\  A R B )  ->  A R B )
42, 3ersym 6634 . 2  |-  ( (
ph  /\  A R B )  ->  B R A )
51adantr 276 . . 3  |-  ( (
ph  /\  B R A )  ->  R  Er  X )
6 simpr 110 . . 3  |-  ( (
ph  /\  B R A )  ->  B R A )
75, 6ersym 6634 . 2  |-  ( (
ph  /\  B R A )  ->  A R B )
84, 7impbida 596 1  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   class class class wbr 4045    Er wer 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-er 6622
This theorem is referenced by:  ercnv  6643  erth  6668  erth2  6669  iinerm  6696  ensymb  6874
  Copyright terms: Public domain W3C validator