ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersymb Unicode version

Theorem ersymb 6511
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
Assertion
Ref Expression
ersymb  |-  ( ph  ->  ( A R B  <-> 
B R A ) )

Proof of Theorem ersymb
StepHypRef Expression
1 ersymb.1 . . . 4  |-  ( ph  ->  R  Er  X )
21adantr 274 . . 3  |-  ( (
ph  /\  A R B )  ->  R  Er  X )
3 simpr 109 . . 3  |-  ( (
ph  /\  A R B )  ->  A R B )
42, 3ersym 6509 . 2  |-  ( (
ph  /\  A R B )  ->  B R A )
51adantr 274 . . 3  |-  ( (
ph  /\  B R A )  ->  R  Er  X )
6 simpr 109 . . 3  |-  ( (
ph  /\  B R A )  ->  B R A )
75, 6ersym 6509 . 2  |-  ( (
ph  /\  B R A )  ->  A R B )
84, 7impbida 586 1  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   class class class wbr 3981    Er wer 6494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-xp 4609  df-rel 4610  df-cnv 4611  df-er 6497
This theorem is referenced by:  ercnv  6518  erth  6541  erth2  6542  iinerm  6569  ensymb  6742
  Copyright terms: Public domain W3C validator