ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersymb Unicode version

Theorem ersymb 6549
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
Assertion
Ref Expression
ersymb  |-  ( ph  ->  ( A R B  <-> 
B R A ) )

Proof of Theorem ersymb
StepHypRef Expression
1 ersymb.1 . . . 4  |-  ( ph  ->  R  Er  X )
21adantr 276 . . 3  |-  ( (
ph  /\  A R B )  ->  R  Er  X )
3 simpr 110 . . 3  |-  ( (
ph  /\  A R B )  ->  A R B )
42, 3ersym 6547 . 2  |-  ( (
ph  /\  A R B )  ->  B R A )
51adantr 276 . . 3  |-  ( (
ph  /\  B R A )  ->  R  Er  X )
6 simpr 110 . . 3  |-  ( (
ph  /\  B R A )  ->  B R A )
75, 6ersym 6547 . 2  |-  ( (
ph  /\  B R A )  ->  A R B )
84, 7impbida 596 1  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   class class class wbr 4004    Er wer 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-er 6535
This theorem is referenced by:  ercnv  6556  erth  6579  erth2  6580  iinerm  6607  ensymb  6780
  Copyright terms: Public domain W3C validator