ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erref Unicode version

Theorem erref 6521
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
erref.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erref  |-  ( ph  ->  A R A )

Proof of Theorem erref
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4  |-  ( ph  ->  A  e.  X )
2 ersymb.1 . . . . 5  |-  ( ph  ->  R  Er  X )
3 erdm 6511 . . . . 5  |-  ( R  Er  X  ->  dom  R  =  X )
42, 3syl 14 . . . 4  |-  ( ph  ->  dom  R  =  X )
51, 4eleqtrrd 2246 . . 3  |-  ( ph  ->  A  e.  dom  R
)
6 eldmg 4799 . . . 4  |-  ( A  e.  X  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
71, 6syl 14 . . 3  |-  ( ph  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
85, 7mpbid 146 . 2  |-  ( ph  ->  E. x  A R x )
92adantr 274 . . 3  |-  ( (
ph  /\  A R x )  ->  R  Er  X )
10 simpr 109 . . 3  |-  ( (
ph  /\  A R x )  ->  A R x )
119, 10, 10ertr4d 6520 . 2  |-  ( (
ph  /\  A R x )  ->  A R A )
128, 11exlimddv 1886 1  |-  ( ph  ->  A R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   class class class wbr 3982   dom cdm 4604    Er wer 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-er 6501
This theorem is referenced by:  iserd  6527  erth  6545  iinerm  6573  erinxp  6575
  Copyright terms: Public domain W3C validator