ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erref Unicode version

Theorem erref 6653
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
erref.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erref  |-  ( ph  ->  A R A )

Proof of Theorem erref
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4  |-  ( ph  ->  A  e.  X )
2 ersymb.1 . . . . 5  |-  ( ph  ->  R  Er  X )
3 erdm 6643 . . . . 5  |-  ( R  Er  X  ->  dom  R  =  X )
42, 3syl 14 . . . 4  |-  ( ph  ->  dom  R  =  X )
51, 4eleqtrrd 2286 . . 3  |-  ( ph  ->  A  e.  dom  R
)
6 eldmg 4882 . . . 4  |-  ( A  e.  X  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
71, 6syl 14 . . 3  |-  ( ph  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
85, 7mpbid 147 . 2  |-  ( ph  ->  E. x  A R x )
92adantr 276 . . 3  |-  ( (
ph  /\  A R x )  ->  R  Er  X )
10 simpr 110 . . 3  |-  ( (
ph  /\  A R x )  ->  A R x )
119, 10, 10ertr4d 6652 . 2  |-  ( (
ph  /\  A R x )  ->  A R A )
128, 11exlimddv 1923 1  |-  ( ph  ->  A R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   class class class wbr 4051   dom cdm 4683    Er wer 6630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-er 6633
This theorem is referenced by:  iserd  6659  erth  6679  iinerm  6707  erinxp  6709  qusgrp  13643
  Copyright terms: Public domain W3C validator