Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > erref | Unicode version |
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersymb.1 | |
erref.2 |
Ref | Expression |
---|---|
erref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erref.2 | . . . 4 | |
2 | ersymb.1 | . . . . 5 | |
3 | erdm 6491 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | 1, 4 | eleqtrrd 2237 | . . 3 |
6 | eldmg 4782 | . . . 4 | |
7 | 1, 6 | syl 14 | . . 3 |
8 | 5, 7 | mpbid 146 | . 2 |
9 | 2 | adantr 274 | . . 3 |
10 | simpr 109 | . . 3 | |
11 | 9, 10, 10 | ertr4d 6500 | . 2 |
12 | 8, 11 | exlimddv 1878 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 class class class wbr 3966 cdm 4587 wer 6478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3967 df-opab 4027 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-er 6481 |
This theorem is referenced by: iserd 6507 erth 6525 iinerm 6553 erinxp 6555 |
Copyright terms: Public domain | W3C validator |