ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erref Unicode version

Theorem erref 6630
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
erref.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erref  |-  ( ph  ->  A R A )

Proof of Theorem erref
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4  |-  ( ph  ->  A  e.  X )
2 ersymb.1 . . . . 5  |-  ( ph  ->  R  Er  X )
3 erdm 6620 . . . . 5  |-  ( R  Er  X  ->  dom  R  =  X )
42, 3syl 14 . . . 4  |-  ( ph  ->  dom  R  =  X )
51, 4eleqtrrd 2284 . . 3  |-  ( ph  ->  A  e.  dom  R
)
6 eldmg 4871 . . . 4  |-  ( A  e.  X  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
71, 6syl 14 . . 3  |-  ( ph  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
85, 7mpbid 147 . 2  |-  ( ph  ->  E. x  A R x )
92adantr 276 . . 3  |-  ( (
ph  /\  A R x )  ->  R  Er  X )
10 simpr 110 . . 3  |-  ( (
ph  /\  A R x )  ->  A R x )
119, 10, 10ertr4d 6629 . 2  |-  ( (
ph  /\  A R x )  ->  A R A )
128, 11exlimddv 1921 1  |-  ( ph  ->  A R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   class class class wbr 4043   dom cdm 4673    Er wer 6607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-er 6610
This theorem is referenced by:  iserd  6636  erth  6656  iinerm  6684  erinxp  6686  qusgrp  13486
  Copyright terms: Public domain W3C validator