ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erref Unicode version

Theorem erref 6607
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
erref.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erref  |-  ( ph  ->  A R A )

Proof of Theorem erref
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4  |-  ( ph  ->  A  e.  X )
2 ersymb.1 . . . . 5  |-  ( ph  ->  R  Er  X )
3 erdm 6597 . . . . 5  |-  ( R  Er  X  ->  dom  R  =  X )
42, 3syl 14 . . . 4  |-  ( ph  ->  dom  R  =  X )
51, 4eleqtrrd 2273 . . 3  |-  ( ph  ->  A  e.  dom  R
)
6 eldmg 4857 . . . 4  |-  ( A  e.  X  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
71, 6syl 14 . . 3  |-  ( ph  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
85, 7mpbid 147 . 2  |-  ( ph  ->  E. x  A R x )
92adantr 276 . . 3  |-  ( (
ph  /\  A R x )  ->  R  Er  X )
10 simpr 110 . . 3  |-  ( (
ph  /\  A R x )  ->  A R x )
119, 10, 10ertr4d 6606 . 2  |-  ( (
ph  /\  A R x )  ->  A R A )
128, 11exlimddv 1910 1  |-  ( ph  ->  A R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   class class class wbr 4029   dom cdm 4659    Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-er 6587
This theorem is referenced by:  iserd  6613  erth  6633  iinerm  6661  erinxp  6663  qusgrp  13302
  Copyright terms: Public domain W3C validator