| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erref | Unicode version | ||
| Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 |
|
| erref.2 |
|
| Ref | Expression |
|---|---|
| erref |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erref.2 |
. . . 4
| |
| 2 | ersymb.1 |
. . . . 5
| |
| 3 | erdm 6688 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 1, 4 | eleqtrrd 2309 |
. . 3
|
| 6 | eldmg 4917 |
. . . 4
| |
| 7 | 1, 6 | syl 14 |
. . 3
|
| 8 | 5, 7 | mpbid 147 |
. 2
|
| 9 | 2 | adantr 276 |
. . 3
|
| 10 | simpr 110 |
. . 3
| |
| 11 | 9, 10, 10 | ertr4d 6697 |
. 2
|
| 12 | 8, 11 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-er 6678 |
| This theorem is referenced by: iserd 6704 erth 6724 iinerm 6752 erinxp 6754 qusgrp 13764 |
| Copyright terms: Public domain | W3C validator |