ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm Unicode version

Theorem erdm 6599
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm  |-  ( R  Er  A  ->  dom  R  =  A )

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6589 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp2bi 1015 1  |-  ( R  Er  A  ->  dom  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3152    C_ wss 3154   `'ccnv 4659   dom cdm 4660    o. ccom 4664   Rel wrel 4665    Er wer 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982  df-er 6589
This theorem is referenced by:  ercl  6600  erref  6609  errn  6611  erssxp  6612  erexb  6614  ereldm  6634  uniqs2  6651  iinerm  6663  th3qlem1  6693  0nnq  7426  nnnq0lem1  7508  prsrlem1  7804  gt0srpr  7810  0nsr  7811  divsfval  12914
  Copyright terms: Public domain W3C validator