ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm Unicode version

Theorem erdm 6523
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm  |-  ( R  Er  A  ->  dom  R  =  A )

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6513 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp2bi 1008 1  |-  ( R  Er  A  ->  dom  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    u. cun 3119    C_ wss 3121   `'ccnv 4610   dom cdm 4611    o. ccom 4615   Rel wrel 4616    Er wer 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 975  df-er 6513
This theorem is referenced by:  ercl  6524  erref  6533  errn  6535  erssxp  6536  erexb  6538  ereldm  6556  uniqs2  6573  iinerm  6585  th3qlem1  6615  0nnq  7326  nnnq0lem1  7408  prsrlem1  7704  gt0srpr  7710  0nsr  7711
  Copyright terms: Public domain W3C validator