ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm Unicode version

Theorem erdm 6653
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm  |-  ( R  Er  A  ->  dom  R  =  A )

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6643 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp2bi 1016 1  |-  ( R  Er  A  ->  dom  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172    C_ wss 3174   `'ccnv 4692   dom cdm 4693    o. ccom 4697   Rel wrel 4698    Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 983  df-er 6643
This theorem is referenced by:  ercl  6654  erref  6663  errn  6665  erssxp  6666  erexb  6668  ereldm  6688  uniqs2  6705  iinerm  6717  th3qlem1  6747  0nnq  7512  nnnq0lem1  7594  prsrlem1  7890  gt0srpr  7896  0nsr  7897  divsfval  13275
  Copyright terms: Public domain W3C validator