ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm Unicode version

Theorem erdm 6511
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm  |-  ( R  Er  A  ->  dom  R  =  A )

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6501 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp2bi 1003 1  |-  ( R  Er  A  ->  dom  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    u. cun 3114    C_ wss 3116   `'ccnv 4603   dom cdm 4604    o. ccom 4608   Rel wrel 4609    Er wer 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 970  df-er 6501
This theorem is referenced by:  ercl  6512  erref  6521  errn  6523  erssxp  6524  erexb  6526  ereldm  6544  uniqs2  6561  iinerm  6573  th3qlem1  6603  0nnq  7305  nnnq0lem1  7387  prsrlem1  7683  gt0srpr  7689  0nsr  7690
  Copyright terms: Public domain W3C validator