| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erdm | Unicode version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6601 |
. 2
| |
| 2 | 1 | simp2bi 1015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-er 6601 |
| This theorem is referenced by: ercl 6612 erref 6621 errn 6623 erssxp 6624 erexb 6626 ereldm 6646 uniqs2 6663 iinerm 6675 th3qlem1 6705 0nnq 7448 nnnq0lem1 7530 prsrlem1 7826 gt0srpr 7832 0nsr 7833 divsfval 13030 |
| Copyright terms: Public domain | W3C validator |