ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm Unicode version

Theorem erdm 6632
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm  |-  ( R  Er  A  ->  dom  R  =  A )

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6622 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp2bi 1016 1  |-  ( R  Er  A  ->  dom  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3164    C_ wss 3166   `'ccnv 4675   dom cdm 4676    o. ccom 4680   Rel wrel 4681    Er wer 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 983  df-er 6622
This theorem is referenced by:  ercl  6633  erref  6642  errn  6644  erssxp  6645  erexb  6647  ereldm  6667  uniqs2  6684  iinerm  6696  th3qlem1  6726  0nnq  7479  nnnq0lem1  7561  prsrlem1  7857  gt0srpr  7863  0nsr  7864  divsfval  13193
  Copyright terms: Public domain W3C validator