ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm Unicode version

Theorem erdm 6545
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm  |-  ( R  Er  A  ->  dom  R  =  A )

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6535 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp2bi 1013 1  |-  ( R  Er  A  ->  dom  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    u. cun 3128    C_ wss 3130   `'ccnv 4626   dom cdm 4627    o. ccom 4631   Rel wrel 4632    Er wer 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 980  df-er 6535
This theorem is referenced by:  ercl  6546  erref  6555  errn  6557  erssxp  6558  erexb  6560  ereldm  6578  uniqs2  6595  iinerm  6607  th3qlem1  6637  0nnq  7363  nnnq0lem1  7445  prsrlem1  7741  gt0srpr  7747  0nsr  7748
  Copyright terms: Public domain W3C validator