ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm Unicode version

Theorem erdm 6690
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm  |-  ( R  Er  A  ->  dom  R  =  A )

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6680 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp2bi 1037 1  |-  ( R  Er  A  ->  dom  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    u. cun 3195    C_ wss 3197   `'ccnv 4718   dom cdm 4719    o. ccom 4723   Rel wrel 4724    Er wer 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-er 6680
This theorem is referenced by:  ercl  6691  erref  6700  errn  6702  erssxp  6703  erexb  6705  ereldm  6725  uniqs2  6742  iinerm  6754  th3qlem1  6784  0nnq  7551  nnnq0lem1  7633  prsrlem1  7929  gt0srpr  7935  0nsr  7936  divsfval  13361
  Copyright terms: Public domain W3C validator