| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erdm | Unicode version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6680 |
. 2
| |
| 2 | 1 | simp2bi 1037 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-er 6680 |
| This theorem is referenced by: ercl 6691 erref 6700 errn 6702 erssxp 6703 erexb 6705 ereldm 6725 uniqs2 6742 iinerm 6754 th3qlem1 6784 0nnq 7551 nnnq0lem1 7633 prsrlem1 7929 gt0srpr 7935 0nsr 7936 divsfval 13361 |
| Copyright terms: Public domain | W3C validator |