| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfer2 | Unicode version | ||
| Description: Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfer2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6643 |
. 2
| |
| 2 | cnvsym 5085 |
. . . . 5
| |
| 3 | cotr 5083 |
. . . . 5
| |
| 4 | 2, 3 | anbi12i 460 |
. . . 4
|
| 5 | unss 3355 |
. . . 4
| |
| 6 | 19.28v 1925 |
. . . . . . . 8
| |
| 7 | 6 | albii 1494 |
. . . . . . 7
|
| 8 | 19.26 1505 |
. . . . . . 7
| |
| 9 | 7, 8 | bitri 184 |
. . . . . 6
|
| 10 | 9 | albii 1494 |
. . . . 5
|
| 11 | 19.26 1505 |
. . . . 5
| |
| 12 | 10, 11 | bitr2i 185 |
. . . 4
|
| 13 | 4, 5, 12 | 3bitr3i 210 |
. . 3
|
| 14 | 13 | 3anbi3i 1195 |
. 2
|
| 15 | 1, 14 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-er 6643 |
| This theorem is referenced by: iserd 6669 |
| Copyright terms: Public domain | W3C validator |