| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfer2 | Unicode version | ||
| Description: Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfer2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6620 |
. 2
| |
| 2 | cnvsym 5066 |
. . . . 5
| |
| 3 | cotr 5064 |
. . . . 5
| |
| 4 | 2, 3 | anbi12i 460 |
. . . 4
|
| 5 | unss 3347 |
. . . 4
| |
| 6 | 19.28v 1924 |
. . . . . . . 8
| |
| 7 | 6 | albii 1493 |
. . . . . . 7
|
| 8 | 19.26 1504 |
. . . . . . 7
| |
| 9 | 7, 8 | bitri 184 |
. . . . . 6
|
| 10 | 9 | albii 1493 |
. . . . 5
|
| 11 | 19.26 1504 |
. . . . 5
| |
| 12 | 10, 11 | bitr2i 185 |
. . . 4
|
| 13 | 4, 5, 12 | 3bitr3i 210 |
. . 3
|
| 14 | 13 | 3anbi3i 1195 |
. 2
|
| 15 | 1, 14 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-er 6620 |
| This theorem is referenced by: iserd 6646 |
| Copyright terms: Public domain | W3C validator |