ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfer2 Unicode version

Theorem dfer2 6681
Description: Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
dfer2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
Distinct variable group:    x, y, z, R
Allowed substitution hints:    A( x, y, z)

Proof of Theorem dfer2
StepHypRef Expression
1 df-er 6680 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
2 cnvsym 5112 . . . . 5  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
3 cotr 5110 . . . . 5  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
42, 3anbi12i 460 . . . 4  |-  ( ( `' R  C_  R  /\  ( R  o.  R
)  C_  R )  <->  ( A. x A. y
( x R y  ->  y R x )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) ) )
5 unss 3378 . . . 4  |-  ( ( `' R  C_  R  /\  ( R  o.  R
)  C_  R )  <->  ( `' R  u.  ( R  o.  R )
)  C_  R )
6 19.28v 1947 . . . . . . . 8  |-  ( A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
76albii 1516 . . . . . . 7  |-  ( A. y A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <->  A. y ( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
8 19.26 1527 . . . . . . 7  |-  ( A. y ( ( x R y  ->  y R x )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
97, 8bitri 184 . . . . . 6  |-  ( A. y A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
109albii 1516 . . . . 5  |-  ( A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x
( A. y ( x R y  -> 
y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 19.26 1527 . . . . 5  |-  ( A. x ( A. y
( x R y  ->  y R x )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )  <-> 
( A. x A. y ( x R y  ->  y R x )  /\  A. x A. y A. z
( ( x R y  /\  y R z )  ->  x R z ) ) )
1210, 11bitr2i 185 . . . 4  |-  ( ( A. x A. y
( x R y  ->  y R x )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )  <->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
134, 5, 123bitr3i 210 . . 3  |-  ( ( `' R  u.  ( R  o.  R )
)  C_  R  <->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
14133anbi3i 1216 . 2  |-  ( ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
151, 14bitri 184 1  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   A.wal 1393    = wceq 1395    u. cun 3195    C_ wss 3197   class class class wbr 4083   `'ccnv 4718   dom cdm 4719    o. ccom 4723   Rel wrel 4724    Er wer 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-er 6680
This theorem is referenced by:  iserd  6706
  Copyright terms: Public domain W3C validator