| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ereq1 | Unicode version | ||
| Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ereq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releq 4801 |
. . 3
| |
| 2 | dmeq 4923 |
. . . 4
| |
| 3 | 2 | eqeq1d 2238 |
. . 3
|
| 4 | cnveq 4896 |
. . . . . 6
| |
| 5 | coeq1 4879 |
. . . . . . 7
| |
| 6 | coeq2 4880 |
. . . . . . 7
| |
| 7 | 5, 6 | eqtrd 2262 |
. . . . . 6
|
| 8 | 4, 7 | uneq12d 3359 |
. . . . 5
|
| 9 | 8 | sseq1d 3253 |
. . . 4
|
| 10 | sseq2 3248 |
. . . 4
| |
| 11 | 9, 10 | bitrd 188 |
. . 3
|
| 12 | 1, 3, 11 | 3anbi123d 1346 |
. 2
|
| 13 | df-er 6680 |
. 2
| |
| 14 | df-er 6680 |
. 2
| |
| 15 | 12, 13, 14 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-er 6680 |
| This theorem is referenced by: riinerm 6755 |
| Copyright terms: Public domain | W3C validator |