Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ereq1 | Unicode version |
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releq 4693 | . . 3 | |
2 | dmeq 4811 | . . . 4 | |
3 | 2 | eqeq1d 2179 | . . 3 |
4 | cnveq 4785 | . . . . . 6 | |
5 | coeq1 4768 | . . . . . . 7 | |
6 | coeq2 4769 | . . . . . . 7 | |
7 | 5, 6 | eqtrd 2203 | . . . . . 6 |
8 | 4, 7 | uneq12d 3282 | . . . . 5 |
9 | 8 | sseq1d 3176 | . . . 4 |
10 | sseq2 3171 | . . . 4 | |
11 | 9, 10 | bitrd 187 | . . 3 |
12 | 1, 3, 11 | 3anbi123d 1307 | . 2 |
13 | df-er 6513 | . 2 | |
14 | df-er 6513 | . 2 | |
15 | 12, 13, 14 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 973 wceq 1348 cun 3119 wss 3121 ccnv 4610 cdm 4611 ccom 4615 wrel 4616 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-er 6513 |
This theorem is referenced by: riinerm 6586 |
Copyright terms: Public domain | W3C validator |