ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereq1 Unicode version

Theorem ereq1 6594
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )

Proof of Theorem ereq1
StepHypRef Expression
1 releq 4741 . . 3  |-  ( R  =  S  ->  ( Rel  R  <->  Rel  S ) )
2 dmeq 4862 . . . 4  |-  ( R  =  S  ->  dom  R  =  dom  S )
32eqeq1d 2202 . . 3  |-  ( R  =  S  ->  ( dom  R  =  A  <->  dom  S  =  A ) )
4 cnveq 4836 . . . . . 6  |-  ( R  =  S  ->  `' R  =  `' S
)
5 coeq1 4819 . . . . . . 7  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  R ) )
6 coeq2 4820 . . . . . . 7  |-  ( R  =  S  ->  ( S  o.  R )  =  ( S  o.  S ) )
75, 6eqtrd 2226 . . . . . 6  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  S ) )
84, 7uneq12d 3314 . . . . 5  |-  ( R  =  S  ->  ( `' R  u.  ( R  o.  R )
)  =  ( `' S  u.  ( S  o.  S ) ) )
98sseq1d 3208 . . . 4  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  R )
)
10 sseq2 3203 . . . 4  |-  ( R  =  S  ->  (
( `' S  u.  ( S  o.  S
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
119, 10bitrd 188 . . 3  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
121, 3, 113anbi123d 1323 . 2  |-  ( R  =  S  ->  (
( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S )
)  C_  S )
) )
13 df-er 6587 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
14 df-er 6587 . 2  |-  ( S  Er  A  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S ) ) 
C_  S ) )
1512, 13, 143bitr4g 223 1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    u. cun 3151    C_ wss 3153   `'ccnv 4658   dom cdm 4659    o. ccom 4663   Rel wrel 4664    Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-er 6587
This theorem is referenced by:  riinerm  6662
  Copyright terms: Public domain W3C validator