Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ereq1 | Unicode version |
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releq 4665 | . . 3 | |
2 | dmeq 4783 | . . . 4 | |
3 | 2 | eqeq1d 2166 | . . 3 |
4 | cnveq 4757 | . . . . . 6 | |
5 | coeq1 4740 | . . . . . . 7 | |
6 | coeq2 4741 | . . . . . . 7 | |
7 | 5, 6 | eqtrd 2190 | . . . . . 6 |
8 | 4, 7 | uneq12d 3262 | . . . . 5 |
9 | 8 | sseq1d 3157 | . . . 4 |
10 | sseq2 3152 | . . . 4 | |
11 | 9, 10 | bitrd 187 | . . 3 |
12 | 1, 3, 11 | 3anbi123d 1294 | . 2 |
13 | df-er 6473 | . 2 | |
14 | df-er 6473 | . 2 | |
15 | 12, 13, 14 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 963 wceq 1335 cun 3100 wss 3102 ccnv 4582 cdm 4583 ccom 4587 wrel 4588 wer 6470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-er 6473 |
This theorem is referenced by: riinerm 6546 |
Copyright terms: Public domain | W3C validator |