ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereq1 Unicode version

Theorem ereq1 6627
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )

Proof of Theorem ereq1
StepHypRef Expression
1 releq 4757 . . 3  |-  ( R  =  S  ->  ( Rel  R  <->  Rel  S ) )
2 dmeq 4878 . . . 4  |-  ( R  =  S  ->  dom  R  =  dom  S )
32eqeq1d 2214 . . 3  |-  ( R  =  S  ->  ( dom  R  =  A  <->  dom  S  =  A ) )
4 cnveq 4852 . . . . . 6  |-  ( R  =  S  ->  `' R  =  `' S
)
5 coeq1 4835 . . . . . . 7  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  R ) )
6 coeq2 4836 . . . . . . 7  |-  ( R  =  S  ->  ( S  o.  R )  =  ( S  o.  S ) )
75, 6eqtrd 2238 . . . . . 6  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  S ) )
84, 7uneq12d 3328 . . . . 5  |-  ( R  =  S  ->  ( `' R  u.  ( R  o.  R )
)  =  ( `' S  u.  ( S  o.  S ) ) )
98sseq1d 3222 . . . 4  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  R )
)
10 sseq2 3217 . . . 4  |-  ( R  =  S  ->  (
( `' S  u.  ( S  o.  S
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
119, 10bitrd 188 . . 3  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
121, 3, 113anbi123d 1325 . 2  |-  ( R  =  S  ->  (
( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S )
)  C_  S )
) )
13 df-er 6620 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
14 df-er 6620 . 2  |-  ( S  Er  A  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S ) ) 
C_  S ) )
1512, 13, 143bitr4g 223 1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    u. cun 3164    C_ wss 3166   `'ccnv 4674   dom cdm 4675    o. ccom 4679   Rel wrel 4680    Er wer 6617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-er 6620
This theorem is referenced by:  riinerm  6695
  Copyright terms: Public domain W3C validator