Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ereq1 | Unicode version |
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releq 4686 | . . 3 | |
2 | dmeq 4804 | . . . 4 | |
3 | 2 | eqeq1d 2174 | . . 3 |
4 | cnveq 4778 | . . . . . 6 | |
5 | coeq1 4761 | . . . . . . 7 | |
6 | coeq2 4762 | . . . . . . 7 | |
7 | 5, 6 | eqtrd 2198 | . . . . . 6 |
8 | 4, 7 | uneq12d 3277 | . . . . 5 |
9 | 8 | sseq1d 3171 | . . . 4 |
10 | sseq2 3166 | . . . 4 | |
11 | 9, 10 | bitrd 187 | . . 3 |
12 | 1, 3, 11 | 3anbi123d 1302 | . 2 |
13 | df-er 6501 | . 2 | |
14 | df-er 6501 | . 2 | |
15 | 12, 13, 14 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wceq 1343 cun 3114 wss 3116 ccnv 4603 cdm 4604 ccom 4608 wrel 4609 wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-er 6501 |
This theorem is referenced by: riinerm 6574 |
Copyright terms: Public domain | W3C validator |