Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ereq2 | Unicode version |
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2175 | . . 3 | |
2 | 1 | 3anbi2d 1307 | . 2 |
3 | df-er 6501 | . 2 | |
4 | df-er 6501 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wceq 1343 cun 3114 wss 3116 ccnv 4603 cdm 4604 ccom 4608 wrel 4609 wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-cleq 2158 df-er 6501 |
This theorem is referenced by: iserd 6527 |
Copyright terms: Public domain | W3C validator |