ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereq2 Unicode version

Theorem ereq2 6600
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq2  |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )

Proof of Theorem ereq2
StepHypRef Expression
1 eqeq2 2206 . . 3  |-  ( A  =  B  ->  ( dom  R  =  A  <->  dom  R  =  B ) )
213anbi2d 1328 . 2  |-  ( A  =  B  ->  (
( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  R  /\  dom  R  =  B  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
) )
3 df-er 6592 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
4 df-er 6592 . 2  |-  ( R  Er  B  <->  ( Rel  R  /\  dom  R  =  B  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
52, 3, 43bitr4g 223 1  |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    u. cun 3155    C_ wss 3157   `'ccnv 4662   dom cdm 4663    o. ccom 4667   Rel wrel 4668    Er wer 6589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-cleq 2189  df-er 6592
This theorem is referenced by:  iserd  6618
  Copyright terms: Public domain W3C validator