ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereq2 Unicode version

Theorem ereq2 6503
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq2  |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )

Proof of Theorem ereq2
StepHypRef Expression
1 eqeq2 2174 . . 3  |-  ( A  =  B  ->  ( dom  R  =  A  <->  dom  R  =  B ) )
213anbi2d 1306 . 2  |-  ( A  =  B  ->  (
( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  R  /\  dom  R  =  B  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
) )
3 df-er 6495 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
4 df-er 6495 . 2  |-  ( R  Er  B  <->  ( Rel  R  /\  dom  R  =  B  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
52, 3, 43bitr4g 222 1  |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 967    = wceq 1342    u. cun 3112    C_ wss 3114   `'ccnv 4600   dom cdm 4601    o. ccom 4605   Rel wrel 4606    Er wer 6492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-gen 1436  ax-4 1497  ax-17 1513  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-3an 969  df-cleq 2157  df-er 6495
This theorem is referenced by:  iserd  6521
  Copyright terms: Public domain W3C validator