ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr Unicode version

Theorem ertr 6452
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
Assertion
Ref Expression
ertr  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A R C ) )

Proof of Theorem ertr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ersymb.1 . . . . . . 7  |-  ( ph  ->  R  Er  X )
2 errel 6446 . . . . . . 7  |-  ( R  Er  X  ->  Rel  R )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  Rel  R )
4 simpr 109 . . . . . 6  |-  ( ( A R B  /\  B R C )  ->  B R C )
5 brrelex 4587 . . . . . 6  |-  ( ( Rel  R  /\  B R C )  ->  B  e.  _V )
63, 4, 5syl2an 287 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  B  e.  _V )
7 simpr 109 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  -> 
( A R B  /\  B R C ) )
8 breq2 3941 . . . . . . 7  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
9 breq1 3940 . . . . . . 7  |-  ( x  =  B  ->  (
x R C  <->  B R C ) )
108, 9anbi12d 465 . . . . . 6  |-  ( x  =  B  ->  (
( A R x  /\  x R C )  <->  ( A R B  /\  B R C ) ) )
1110spcegv 2777 . . . . 5  |-  ( B  e.  _V  ->  (
( A R B  /\  B R C )  ->  E. x
( A R x  /\  x R C ) ) )
126, 7, 11sylc 62 . . . 4  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  E. x ( A R x  /\  x R C ) )
13 simpl 108 . . . . . 6  |-  ( ( A R B  /\  B R C )  ->  A R B )
14 brrelex 4587 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
153, 13, 14syl2an 287 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  A  e.  _V )
16 brrelex2 4588 . . . . . 6  |-  ( ( Rel  R  /\  B R C )  ->  C  e.  _V )
173, 4, 16syl2an 287 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  C  e.  _V )
18 brcog 4714 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A ( R  o.  R ) C  <->  E. x ( A R x  /\  x R C ) ) )
1915, 17, 18syl2anc 409 . . . 4  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  -> 
( A ( R  o.  R ) C  <->  E. x ( A R x  /\  x R C ) ) )
2012, 19mpbird 166 . . 3  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  A ( R  o.  R ) C )
2120ex 114 . 2  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A
( R  o.  R
) C ) )
22 df-er 6437 . . . . . 6  |-  ( R  Er  X  <->  ( Rel  R  /\  dom  R  =  X  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
2322simp3bi 999 . . . . 5  |-  ( R  Er  X  ->  ( `' R  u.  ( R  o.  R )
)  C_  R )
241, 23syl 14 . . . 4  |-  ( ph  ->  ( `' R  u.  ( R  o.  R
) )  C_  R
)
2524unssbd 3259 . . 3  |-  ( ph  ->  ( R  o.  R
)  C_  R )
2625ssbrd 3979 . 2  |-  ( ph  ->  ( A ( R  o.  R ) C  ->  A R C ) )
2721, 26syld 45 1  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   _Vcvv 2689    u. cun 3074    C_ wss 3076   class class class wbr 3937   `'ccnv 4546   dom cdm 4547    o. ccom 4551   Rel wrel 4552    Er wer 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-co 4556  df-er 6437
This theorem is referenced by:  ertrd  6453  erth  6481  iinerm  6509  entr  6686
  Copyright terms: Public domain W3C validator