ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr Unicode version

Theorem ertr 6552
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
Assertion
Ref Expression
ertr  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A R C ) )

Proof of Theorem ertr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ersymb.1 . . . . . . 7  |-  ( ph  ->  R  Er  X )
2 errel 6546 . . . . . . 7  |-  ( R  Er  X  ->  Rel  R )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  Rel  R )
4 simpr 110 . . . . . 6  |-  ( ( A R B  /\  B R C )  ->  B R C )
5 brrelex 4668 . . . . . 6  |-  ( ( Rel  R  /\  B R C )  ->  B  e.  _V )
63, 4, 5syl2an 289 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  B  e.  _V )
7 simpr 110 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  -> 
( A R B  /\  B R C ) )
8 breq2 4009 . . . . . . 7  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
9 breq1 4008 . . . . . . 7  |-  ( x  =  B  ->  (
x R C  <->  B R C ) )
108, 9anbi12d 473 . . . . . 6  |-  ( x  =  B  ->  (
( A R x  /\  x R C )  <->  ( A R B  /\  B R C ) ) )
1110spcegv 2827 . . . . 5  |-  ( B  e.  _V  ->  (
( A R B  /\  B R C )  ->  E. x
( A R x  /\  x R C ) ) )
126, 7, 11sylc 62 . . . 4  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  E. x ( A R x  /\  x R C ) )
13 simpl 109 . . . . . 6  |-  ( ( A R B  /\  B R C )  ->  A R B )
14 brrelex 4668 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
153, 13, 14syl2an 289 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  A  e.  _V )
16 brrelex2 4669 . . . . . 6  |-  ( ( Rel  R  /\  B R C )  ->  C  e.  _V )
173, 4, 16syl2an 289 . . . . 5  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  C  e.  _V )
18 brcog 4796 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A ( R  o.  R ) C  <->  E. x ( A R x  /\  x R C ) ) )
1915, 17, 18syl2anc 411 . . . 4  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  -> 
( A ( R  o.  R ) C  <->  E. x ( A R x  /\  x R C ) ) )
2012, 19mpbird 167 . . 3  |-  ( (
ph  /\  ( A R B  /\  B R C ) )  ->  A ( R  o.  R ) C )
2120ex 115 . 2  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A
( R  o.  R
) C ) )
22 df-er 6537 . . . . . 6  |-  ( R  Er  X  <->  ( Rel  R  /\  dom  R  =  X  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
2322simp3bi 1014 . . . . 5  |-  ( R  Er  X  ->  ( `' R  u.  ( R  o.  R )
)  C_  R )
241, 23syl 14 . . . 4  |-  ( ph  ->  ( `' R  u.  ( R  o.  R
) )  C_  R
)
2524unssbd 3315 . . 3  |-  ( ph  ->  ( R  o.  R
)  C_  R )
2625ssbrd 4048 . 2  |-  ( ph  ->  ( A ( R  o.  R ) C  ->  A R C ) )
2721, 26syld 45 1  |-  ( ph  ->  ( ( A R B  /\  B R C )  ->  A R C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739    u. cun 3129    C_ wss 3131   class class class wbr 4005   `'ccnv 4627   dom cdm 4628    o. ccom 4632   Rel wrel 4633    Er wer 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-co 4637  df-er 6537
This theorem is referenced by:  ertrd  6553  erth  6581  iinerm  6609  entr  6786
  Copyright terms: Public domain W3C validator