| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ertr | Unicode version | ||
| Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| ersymb.1 | 
 | 
| Ref | Expression | 
|---|---|
| ertr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ersymb.1 | 
. . . . . . 7
 | |
| 2 | errel 6601 | 
. . . . . . 7
 | |
| 3 | 1, 2 | syl 14 | 
. . . . . 6
 | 
| 4 | simpr 110 | 
. . . . . 6
 | |
| 5 | brrelex 4703 | 
. . . . . 6
 | |
| 6 | 3, 4, 5 | syl2an 289 | 
. . . . 5
 | 
| 7 | simpr 110 | 
. . . . 5
 | |
| 8 | breq2 4037 | 
. . . . . . 7
 | |
| 9 | breq1 4036 | 
. . . . . . 7
 | |
| 10 | 8, 9 | anbi12d 473 | 
. . . . . 6
 | 
| 11 | 10 | spcegv 2852 | 
. . . . 5
 | 
| 12 | 6, 7, 11 | sylc 62 | 
. . . 4
 | 
| 13 | simpl 109 | 
. . . . . 6
 | |
| 14 | brrelex 4703 | 
. . . . . 6
 | |
| 15 | 3, 13, 14 | syl2an 289 | 
. . . . 5
 | 
| 16 | brrelex2 4704 | 
. . . . . 6
 | |
| 17 | 3, 4, 16 | syl2an 289 | 
. . . . 5
 | 
| 18 | brcog 4833 | 
. . . . 5
 | |
| 19 | 15, 17, 18 | syl2anc 411 | 
. . . 4
 | 
| 20 | 12, 19 | mpbird 167 | 
. . 3
 | 
| 21 | 20 | ex 115 | 
. 2
 | 
| 22 | df-er 6592 | 
. . . . . 6
 | |
| 23 | 22 | simp3bi 1016 | 
. . . . 5
 | 
| 24 | 1, 23 | syl 14 | 
. . . 4
 | 
| 25 | 24 | unssbd 3341 | 
. . 3
 | 
| 26 | 25 | ssbrd 4076 | 
. 2
 | 
| 27 | 21, 26 | syld 45 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-co 4672 df-er 6592 | 
| This theorem is referenced by: ertrd 6608 erth 6638 iinerm 6666 entr 6843 | 
| Copyright terms: Public domain | W3C validator |