| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ertr | Unicode version | ||
| Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 |
|
| Ref | Expression |
|---|---|
| ertr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 |
. . . . . . 7
| |
| 2 | errel 6610 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 14 |
. . . . . 6
|
| 4 | simpr 110 |
. . . . . 6
| |
| 5 | brrelex 4704 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . 5
|
| 7 | simpr 110 |
. . . . 5
| |
| 8 | breq2 4038 |
. . . . . . 7
| |
| 9 | breq1 4037 |
. . . . . . 7
| |
| 10 | 8, 9 | anbi12d 473 |
. . . . . 6
|
| 11 | 10 | spcegv 2852 |
. . . . 5
|
| 12 | 6, 7, 11 | sylc 62 |
. . . 4
|
| 13 | simpl 109 |
. . . . . 6
| |
| 14 | brrelex 4704 |
. . . . . 6
| |
| 15 | 3, 13, 14 | syl2an 289 |
. . . . 5
|
| 16 | brrelex2 4705 |
. . . . . 6
| |
| 17 | 3, 4, 16 | syl2an 289 |
. . . . 5
|
| 18 | brcog 4834 |
. . . . 5
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . 4
|
| 20 | 12, 19 | mpbird 167 |
. . 3
|
| 21 | 20 | ex 115 |
. 2
|
| 22 | df-er 6601 |
. . . . . 6
| |
| 23 | 22 | simp3bi 1016 |
. . . . 5
|
| 24 | 1, 23 | syl 14 |
. . . 4
|
| 25 | 24 | unssbd 3342 |
. . 3
|
| 26 | 25 | ssbrd 4077 |
. 2
|
| 27 | 21, 26 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-co 4673 df-er 6601 |
| This theorem is referenced by: ertrd 6617 erth 6647 iinerm 6675 entr 6852 |
| Copyright terms: Public domain | W3C validator |