| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ertr | Unicode version | ||
| Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 |
|
| Ref | Expression |
|---|---|
| ertr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 |
. . . . . . 7
| |
| 2 | errel 6652 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 14 |
. . . . . 6
|
| 4 | simpr 110 |
. . . . . 6
| |
| 5 | brrelex 4733 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . 5
|
| 7 | simpr 110 |
. . . . 5
| |
| 8 | breq2 4063 |
. . . . . . 7
| |
| 9 | breq1 4062 |
. . . . . . 7
| |
| 10 | 8, 9 | anbi12d 473 |
. . . . . 6
|
| 11 | 10 | spcegv 2868 |
. . . . 5
|
| 12 | 6, 7, 11 | sylc 62 |
. . . 4
|
| 13 | simpl 109 |
. . . . . 6
| |
| 14 | brrelex 4733 |
. . . . . 6
| |
| 15 | 3, 13, 14 | syl2an 289 |
. . . . 5
|
| 16 | brrelex2 4734 |
. . . . . 6
| |
| 17 | 3, 4, 16 | syl2an 289 |
. . . . 5
|
| 18 | brcog 4863 |
. . . . 5
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . 4
|
| 20 | 12, 19 | mpbird 167 |
. . 3
|
| 21 | 20 | ex 115 |
. 2
|
| 22 | df-er 6643 |
. . . . . 6
| |
| 23 | 22 | simp3bi 1017 |
. . . . 5
|
| 24 | 1, 23 | syl 14 |
. . . 4
|
| 25 | 24 | unssbd 3359 |
. . 3
|
| 26 | 25 | ssbrd 4102 |
. 2
|
| 27 | 21, 26 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-co 4702 df-er 6643 |
| This theorem is referenced by: ertrd 6659 erth 6689 iinerm 6717 entr 6899 |
| Copyright terms: Public domain | W3C validator |