| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ertr | Unicode version | ||
| Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 |
|
| Ref | Expression |
|---|---|
| ertr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersymb.1 |
. . . . . . 7
| |
| 2 | errel 6689 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 14 |
. . . . . 6
|
| 4 | simpr 110 |
. . . . . 6
| |
| 5 | brrelex 4759 |
. . . . . 6
| |
| 6 | 3, 4, 5 | syl2an 289 |
. . . . 5
|
| 7 | simpr 110 |
. . . . 5
| |
| 8 | breq2 4087 |
. . . . . . 7
| |
| 9 | breq1 4086 |
. . . . . . 7
| |
| 10 | 8, 9 | anbi12d 473 |
. . . . . 6
|
| 11 | 10 | spcegv 2891 |
. . . . 5
|
| 12 | 6, 7, 11 | sylc 62 |
. . . 4
|
| 13 | simpl 109 |
. . . . . 6
| |
| 14 | brrelex 4759 |
. . . . . 6
| |
| 15 | 3, 13, 14 | syl2an 289 |
. . . . 5
|
| 16 | brrelex2 4760 |
. . . . . 6
| |
| 17 | 3, 4, 16 | syl2an 289 |
. . . . 5
|
| 18 | brcog 4889 |
. . . . 5
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . 4
|
| 20 | 12, 19 | mpbird 167 |
. . 3
|
| 21 | 20 | ex 115 |
. 2
|
| 22 | df-er 6680 |
. . . . . 6
| |
| 23 | 22 | simp3bi 1038 |
. . . . 5
|
| 24 | 1, 23 | syl 14 |
. . . 4
|
| 25 | 24 | unssbd 3382 |
. . 3
|
| 26 | 25 | ssbrd 4126 |
. 2
|
| 27 | 21, 26 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-co 4728 df-er 6680 |
| This theorem is referenced by: ertrd 6696 erth 6726 iinerm 6754 entr 6936 |
| Copyright terms: Public domain | W3C validator |