HomeHome Intuitionistic Logic Explorer
Theorem List (p. 66 of 157)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6501-6600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsucinc2 6501* Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.)
 |-  F  =  ( z  e.  _V  |->  suc  z
 )   =>    |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A )  C_  ( F `
  B ) )
 
Theoremfnoa 6502 Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Mario Carneiro, 3-Jul-2019.)
 |- 
 +o  Fn  ( On  X. 
 On )
 
Theoremoaexg 6503 Ordinal addition is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +o  B )  e.  _V )
 
Theoremomfnex 6504* The characteristic function for ordinal multiplication is defined everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.)
 |-  ( A  e.  V  ->  ( x  e.  _V  |->  ( x  +o  A ) )  Fn  _V )
 
Theoremfnom 6505 Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 3-Jul-2019.)
 |- 
 .o  Fn  ( On  X. 
 On )
 
Theoremomexg 6506 Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .o  B )  e.  _V )
 
Theoremfnoei 6507 Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.) (Revised by Mario Carneiro, 3-Jul-2019.)
 |-o  Fn  ( On  X.  On )
 
Theoremoeiexg 6508 Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Ao  B )  e.  _V )
 
Theoremoav 6509* Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B )  =  ( rec ( ( x  e. 
 _V  |->  suc  x ) ,  A ) `  B ) )
 
Theoremomv 6510* Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B )  =  ( rec ( ( x  e. 
 _V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
 
Theoremoeiv 6511* Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ao  B )  =  ( rec (
 ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
 
Theoremoa0 6512 Addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
 
Theoremom0 6513 Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )
 
Theoremoei0 6514 Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  On  ->  ( Ao  (/) )  =  1o )
 
Theoremoacl 6515 Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B )  e.  On )
 
Theoremomcl 6516 Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B )  e.  On )
 
Theoremoeicl 6517 Closure law for ordinal exponentiation. (Contributed by Jim Kingdon, 26-Jul-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ao  B )  e.  On )
 
Theoremoav2 6518* Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B )  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
 
Theoremoasuc 6519 Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  suc 
 B )  =  suc  ( A  +o  B ) )
 
Theoremomv2 6520* Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B )  =  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )
 
Theoremonasuc 6521 Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  +o  suc 
 B )  =  suc  ( A  +o  B ) )
 
Theoremoa1suc 6522 Addition with 1 is same as successor. Proposition 4.34(a) of [Mendelson] p. 266. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 16-Nov-2014.)
 |-  ( A  e.  On  ->  ( A  +o  1o )  =  suc  A )
 
Theoremo1p1e2 6523 1 + 1 = 2 for ordinal numbers. (Contributed by NM, 18-Feb-2004.)
 |-  ( 1o  +o  1o )  =  2o
 
Theoremoawordi 6524 Weak ordering property of ordinal addition. (Contributed by Jim Kingdon, 27-Jul-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  ->  ( C  +o  A )  C_  ( C  +o  B ) ) )
 
Theoremoawordriexmid 6525* A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6524. (Contributed by Jim Kingdon, 15-May-2022.)
 |-  ( ( a  e. 
 On  /\  b  e.  On  /\  c  e.  On )  ->  ( a  C_  b  ->  ( a  +o  c )  C_  ( b  +o  c ) ) )   =>    |-  ( ph  \/  -.  ph )
 
Theoremoaword1 6526 An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. (Contributed by NM, 6-Dec-2004.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  C_  ( A  +o  B ) )
 
Theoremomsuc 6527 Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  suc 
 B )  =  ( ( A  .o  B )  +o  A ) )
 
Theoremonmsuc 6528 Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
 |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc 
 B )  =  ( ( A  .o  B )  +o  A ) )
 
2.6.24  Natural number arithmetic
 
Theoremnna0 6529 Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
 |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
 
Theoremnnm0 6530 Multiplication with zero. Theorem 4J(A1) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.)
 |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
 
Theoremnnasuc 6531 Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  +o  suc 
 B )  =  suc  ( A  +o  B ) )
 
Theoremnnmsuc 6532 Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  .o  suc 
 B )  =  ( ( A  .o  B )  +o  A ) )
 
Theoremnna0r 6533 Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
 |-  ( A  e.  om  ->  ( (/)  +o  A )  =  A )
 
Theoremnnm0r 6534 Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( A  e.  om  ->  ( (/)  .o  A )  =  (/) )
 
Theoremnnacl 6535 Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  +o  B )  e.  om )
 
Theoremnnmcl 6536 Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  .o  B )  e.  om )
 
Theoremnnacli 6537  om is closed under addition. Inference form of nnacl 6535. (Contributed by Scott Fenton, 20-Apr-2012.)
 |-  A  e.  om   &    |-  B  e.  om   =>    |-  ( A  +o  B )  e.  om
 
Theoremnnmcli 6538  om is closed under multiplication. Inference form of nnmcl 6536. (Contributed by Scott Fenton, 20-Apr-2012.)
 |-  A  e.  om   &    |-  B  e.  om   =>    |-  ( A  .o  B )  e.  om
 
Theoremnnacom 6539 Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  +o  B )  =  ( B  +o  A ) )
 
Theoremnnaass 6540 Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  +o  B )  +o  C )  =  ( A  +o  ( B  +o  C ) ) )
 
Theoremnndi 6541 Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
 
Theoremnnmass 6542 Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  .o  B )  .o  C )  =  ( A  .o  ( B  .o  C ) ) )
 
Theoremnnmsucr 6543 Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B )  +o  B ) )
 
Theoremnnmcom 6544 Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  .o  B )  =  ( B  .o  A ) )
 
Theoremnndir 6545 Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  +o  B )  .o  C )  =  ( ( A  .o  C )  +o  ( B  .o  C ) ) )
 
Theoremnnsucelsuc 6546 Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4541, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4563. (Contributed by Jim Kingdon, 25-Aug-2019.)
 |-  ( B  e.  om  ->  ( A  e.  B  <->  suc 
 A  e.  suc  B ) )
 
Theoremnnsucsssuc 6547 Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4542, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4560. (Contributed by Jim Kingdon, 25-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <-> 
 suc  A  C_  suc  B ) )
 
Theoremnntri3or 6548 Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )
 
Theoremnntri2 6549 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B 
 <->  -.  ( A  =  B  \/  B  e.  A ) ) )
 
Theoremnnsucuniel 6550 Given an element  A of the union of a natural number  B,  suc  A is an element of  B itself. The reverse direction holds for all ordinals (sucunielr 4543). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4564). (Contributed by Jim Kingdon, 13-Mar-2022.)
 |-  ( B  e.  om  ->  ( A  e.  U. B 
 <-> 
 suc  A  e.  B ) )
 
Theoremnntri1 6551 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <->  -.  B  e.  A ) )
 
Theoremnntri3 6552 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  =  B 
 <->  ( -.  A  e.  B  /\  -.  B  e.  A ) ) )
 
Theoremnntri2or2 6553 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )
 
Theoremnndceq 6554 Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where  B is zero, see nndceq0 4651. (Contributed by Jim Kingdon, 31-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  -> DECID  A  =  B )
 
Theoremnndcel 6555 Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  -> DECID  A  e.  B )
 
Theoremnnsseleq 6556 For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <->  ( A  e.  B  \/  A  =  B ) ) )
 
Theoremnnsssuc 6557 A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <->  A  e.  suc  B ) )
 
Theoremnntr2 6558 Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.)
 |-  ( ( A  e.  om 
 /\  C  e.  om )  ->  ( ( A 
 C_  B  /\  B  e.  C )  ->  A  e.  C ) )
 
Theoremdcdifsnid 6559* If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3765 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
 { B } )  =  A )
 
Theoremfnsnsplitdc 6560* Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A )  ->  F  =  ( ( F  |`  ( A 
 \  { X }
 ) )  u.  { <. X ,  ( F `
  X ) >. } ) )
 
Theoremfunresdfunsndc 6561* Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun 
 F  /\  X  e.  dom 
 F )  ->  (
 ( F  |`  ( _V  \  { X } )
 )  u.  { <. X ,  ( F `  X ) >. } )  =  F )
 
Theoremnndifsnid 6562 If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3765 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  A )  ->  ( ( A 
 \  { B }
 )  u.  { B } )  =  A )
 
Theoremnnaordi 6563 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( B  e.  om 
 /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
 
Theoremnnaord 6564 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
 
Theoremnnaordr 6565 Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( A  +o  C )  e.  ( B  +o  C ) ) )
 
Theoremnnaword 6566 Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A ) 
 C_  ( C  +o  B ) ) )
 
Theoremnnacan 6567 Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  +o  B )  =  ( A  +o  C )  <->  B  =  C ) )
 
Theoremnnaword1 6568 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  A  C_  ( A  +o  B ) )
 
Theoremnnaword2 6569 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  A  C_  ( B  +o  A ) )
 
Theoremnnawordi 6570 Adding to both sides of an inequality in  om. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  ->  ( A  +o  C )  C_  ( B  +o  C ) ) )
 
Theoremnnmordi 6571 Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
 
Theoremnnmord 6572 Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  e.  B  /\  (/)  e.  C )  <-> 
 ( C  .o  A )  e.  ( C  .o  B ) ) )
 
Theoremnnmword 6573 Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
 <->  ( C  .o  A )  C_  ( C  .o  B ) ) )
 
Theoremnnmcan 6574 Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C ) 
 <->  B  =  C ) )
 
Theorem1onn 6575 One is a natural number. (Contributed by NM, 29-Oct-1995.)
 |- 
 1o  e.  om
 
Theorem2onn 6576 The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
 |- 
 2o  e.  om
 
Theorem3onn 6577 The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |- 
 3o  e.  om
 
Theorem4onn 6578 The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |- 
 4o  e.  om
 
Theorem2ssom 6579 The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
 |- 
 2o  C_  om
 
Theoremnnm1 6580 Multiply an element of  om by  1o. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )
 
Theoremnnm2 6581 Multiply an element of  om by  2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( A  .o  2o )  =  ( A  +o  A ) )
 
Theoremnn2m 6582 Multiply an element of  om by  2o. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( 2o  .o  A )  =  ( A  +o  A ) )
 
Theoremnnaordex 6583* Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B 
 <-> 
 E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x )  =  B )
 ) )
 
Theoremnnawordex 6584* Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <-> 
 E. x  e.  om  ( A  +o  x )  =  B )
 )
 
Theoremnnm00 6585 The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( ( A  .o  B )  =  (/) 
 <->  ( A  =  (/)  \/  B  =  (/) ) ) )
 
2.6.25  Equivalence relations and classes
 
Syntaxwer 6586 Extend the definition of a wff to include the equivalence predicate.
 wff  R  Er  A
 
Syntaxcec 6587 Extend the definition of a class to include equivalence class.
 class  [ A ] R
 
Syntaxcqs 6588 Extend the definition of a class to include quotient set.
 class  ( A /. R )
 
Definitiondf-er 6589 Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 6590 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 6609, ersymb 6603, and ertr 6604. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
 C_  R ) )
 
Theoremdfer2 6590* Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z
 ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
 
Definitiondf-ec 6591 Define the  R-coset of  A. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of  A modulo  R when  R is an equivalence relation (i.e. when  Er  R; see dfer2 6590). In this case,  A is a representative (member) of the equivalence class  [ A ] R, which contains all sets that are equivalent to  A. Definition of [Enderton] p. 57 uses the notation  [ A ] (subscript)  R, although we simply follow the brackets by  R since we don't have subscripted expressions. For an alternate definition, see dfec2 6592. (Contributed by NM, 23-Jul-1995.)
 |- 
 [ A ] R  =  ( R " { A } )
 
Theoremdfec2 6592* Alternate definition of  R-coset of  A. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  [ A ] R  =  { y  |  A R y } )
 
Theoremecexg 6593 An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
 |-  ( R  e.  B  ->  [ A ] R  e.  _V )
 
Theoremecexr 6594 An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  [ B ] R  ->  B  e.  _V )
 
Definitiondf-qs 6595* Define quotient set.  R is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
 
Theoremereq1 6596 Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
 
Theoremereq2 6597 Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )
 
Theoremerrel 6598 An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  Rel  R )
 
Theoremerdm 6599 The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  dom  R  =  A )
 
Theoremercl 6600 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  A  e.  X )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15644
  Copyright terms: Public domain < Previous  Next >