HomeHome Intuitionistic Logic Explorer
Theorem List (p. 66 of 152)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6501-6600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnmass 6501 Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  .o  B )  .o  C )  =  ( A  .o  ( B  .o  C ) ) )
 
Theoremnnmsucr 6502 Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B )  +o  B ) )
 
Theoremnnmcom 6503 Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  .o  B )  =  ( B  .o  A ) )
 
Theoremnndir 6504 Distributive law for natural numbers (right-distributivity). (Contributed by Jim Kingdon, 3-Dec-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  +o  B )  .o  C )  =  ( ( A  .o  C )  +o  ( B  .o  C ) ) )
 
Theoremnnsucelsuc 6505 Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4519, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4541. (Contributed by Jim Kingdon, 25-Aug-2019.)
 |-  ( B  e.  om  ->  ( A  e.  B  <->  suc 
 A  e.  suc  B ) )
 
Theoremnnsucsssuc 6506 Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4520, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4538. (Contributed by Jim Kingdon, 25-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <-> 
 suc  A  C_  suc  B ) )
 
Theoremnntri3or 6507 Trichotomy for natural numbers. (Contributed by Jim Kingdon, 25-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )
 
Theoremnntri2 6508 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B 
 <->  -.  ( A  =  B  \/  B  e.  A ) ) )
 
Theoremnnsucuniel 6509 Given an element  A of the union of a natural number  B,  suc  A is an element of  B itself. The reverse direction holds for all ordinals (sucunielr 4521). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4542). (Contributed by Jim Kingdon, 13-Mar-2022.)
 |-  ( B  e.  om  ->  ( A  e.  U. B 
 <-> 
 suc  A  e.  B ) )
 
Theoremnntri1 6510 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <->  -.  B  e.  A ) )
 
Theoremnntri3 6511 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  =  B 
 <->  ( -.  A  e.  B  /\  -.  B  e.  A ) ) )
 
Theoremnntri2or2 6512 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B  \/  B  C_  A ) )
 
Theoremnndceq 6513 Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where  B is zero, see nndceq0 4629. (Contributed by Jim Kingdon, 31-Aug-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  -> DECID  A  =  B )
 
Theoremnndcel 6514 Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  -> DECID  A  e.  B )
 
Theoremnnsseleq 6515 For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <->  ( A  e.  B  \/  A  =  B ) ) )
 
Theoremnnsssuc 6516 A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <->  A  e.  suc  B ) )
 
Theoremnntr2 6517 Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.)
 |-  ( ( A  e.  om 
 /\  C  e.  om )  ->  ( ( A 
 C_  B  /\  B  e.  C )  ->  A  e.  C ) )
 
Theoremdcdifsnid 6518* If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3750 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
 { B } )  =  A )
 
Theoremfnsnsplitdc 6519* Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
 |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A )  ->  F  =  ( ( F  |`  ( A 
 \  { X }
 ) )  u.  { <. X ,  ( F `
  X ) >. } ) )
 
Theoremfunresdfunsndc 6520* Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
 |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun 
 F  /\  X  e.  dom 
 F )  ->  (
 ( F  |`  ( _V  \  { X } )
 )  u.  { <. X ,  ( F `  X ) >. } )  =  F )
 
Theoremnndifsnid 6521 If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3750 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
 |-  ( ( A  e.  om 
 /\  B  e.  A )  ->  ( ( A 
 \  { B }
 )  u.  { B } )  =  A )
 
Theoremnnaordi 6522 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( B  e.  om 
 /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
 
Theoremnnaord 6523 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
 
Theoremnnaordr 6524 Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( A  +o  C )  e.  ( B  +o  C ) ) )
 
Theoremnnaword 6525 Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A ) 
 C_  ( C  +o  B ) ) )
 
Theoremnnacan 6526 Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  +o  B )  =  ( A  +o  C )  <->  B  =  C ) )
 
Theoremnnaword1 6527 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  A  C_  ( A  +o  B ) )
 
Theoremnnaword2 6528 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  A  C_  ( B  +o  A ) )
 
Theoremnnawordi 6529 Adding to both sides of an inequality in  om. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  ->  ( A  +o  C )  C_  ( B  +o  C ) ) )
 
Theoremnnmordi 6530 Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
 
Theoremnnmord 6531 Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  e.  B  /\  (/)  e.  C )  <-> 
 ( C  .o  A )  e.  ( C  .o  B ) ) )
 
Theoremnnmword 6532 Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
 <->  ( C  .o  A )  C_  ( C  .o  B ) ) )
 
Theoremnnmcan 6533 Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C ) 
 <->  B  =  C ) )
 
Theorem1onn 6534 One is a natural number. (Contributed by NM, 29-Oct-1995.)
 |- 
 1o  e.  om
 
Theorem2onn 6535 The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
 |- 
 2o  e.  om
 
Theorem3onn 6536 The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |- 
 3o  e.  om
 
Theorem4onn 6537 The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |- 
 4o  e.  om
 
Theorem2ssom 6538 The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
 |- 
 2o  C_  om
 
Theoremnnm1 6539 Multiply an element of  om by  1o. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )
 
Theoremnnm2 6540 Multiply an element of  om by  2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( A  .o  2o )  =  ( A  +o  A ) )
 
Theoremnn2m 6541 Multiply an element of  om by  2o. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( 2o  .o  A )  =  ( A  +o  A ) )
 
Theoremnnaordex 6542* Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B 
 <-> 
 E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x )  =  B )
 ) )
 
Theoremnnawordex 6543* Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <-> 
 E. x  e.  om  ( A  +o  x )  =  B )
 )
 
Theoremnnm00 6544 The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( ( A  .o  B )  =  (/) 
 <->  ( A  =  (/)  \/  B  =  (/) ) ) )
 
2.6.25  Equivalence relations and classes
 
Syntaxwer 6545 Extend the definition of a wff to include the equivalence predicate.
 wff  R  Er  A
 
Syntaxcec 6546 Extend the definition of a class to include equivalence class.
 class  [ A ] R
 
Syntaxcqs 6547 Extend the definition of a class to include quotient set.
 class  ( A /. R )
 
Definitiondf-er 6548 Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 6549 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 6568, ersymb 6562, and ertr 6563. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
 C_  R ) )
 
Theoremdfer2 6549* Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z
 ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
 
Definitiondf-ec 6550 Define the  R-coset of  A. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of  A modulo  R when  R is an equivalence relation (i.e. when  Er  R; see dfer2 6549). In this case,  A is a representative (member) of the equivalence class  [ A ] R, which contains all sets that are equivalent to  A. Definition of [Enderton] p. 57 uses the notation  [ A ] (subscript)  R, although we simply follow the brackets by  R since we don't have subscripted expressions. For an alternate definition, see dfec2 6551. (Contributed by NM, 23-Jul-1995.)
 |- 
 [ A ] R  =  ( R " { A } )
 
Theoremdfec2 6551* Alternate definition of  R-coset of  A. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  [ A ] R  =  { y  |  A R y } )
 
Theoremecexg 6552 An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
 |-  ( R  e.  B  ->  [ A ] R  e.  _V )
 
Theoremecexr 6553 An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  [ B ] R  ->  B  e.  _V )
 
Definitiondf-qs 6554* Define quotient set.  R is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
 
Theoremereq1 6555 Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
 
Theoremereq2 6556 Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )
 
Theoremerrel 6557 An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  Rel  R )
 
Theoremerdm 6558 The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  dom  R  =  A )
 
Theoremercl 6559 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  A  e.  X )
 
Theoremersym 6560 An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  B R A )
 
Theoremercl2 6561 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  B  e.  X )
 
Theoremersymb 6562 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  ( A R B  <->  B R A ) )
 
Theoremertr 6563 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  (
 ( A R B  /\  B R C ) 
 ->  A R C ) )
 
Theoremertrd 6564 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremertr2d 6565 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  C R A )
 
Theoremertr3d 6566 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  B R A )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremertr4d 6567 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C R B )   =>    |-  ( ph  ->  A R C )
 
Theoremerref 6568 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A  e.  X )   =>    |-  ( ph  ->  A R A )
 
Theoremercnv 6569 The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  `' R  =  R )
 
Theoremerrn 6570 The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ran  R  =  A )
 
Theoremerssxp 6571 An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  R  C_  ( A  X.  A ) )
 
Theoremerex 6572 An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V )
 )
 
Theoremerexb 6573 An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )
 
Theoremiserd 6574* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ( ph  /\  x R y )  ->  y R x )   &    |-  (
 ( ph  /\  ( x R y  /\  y R z ) ) 
 ->  x R z )   &    |-  ( ph  ->  ( x  e.  A  <->  x R x ) )   =>    |-  ( ph  ->  R  Er  A )
 
Theorembrdifun 6575 Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   =>    |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B 
 <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
 
Theoremswoer 6576* Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   =>    |-  ( ph  ->  R  Er  X )
 
Theoremswoord1 6577* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  ( A  .<  C  <->  B  .<  C ) )
 
Theoremswoord2 6578* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  ( C  .<  A  <->  C  .<  B ) )
 
Theoremeqerlem 6579* Lemma for eqer 6580. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  ( z R w  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
 
Theoremeqer 6580* Equivalence relation involving equality of dependent classes  A
( x ) and  B ( y ). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  R  Er  _V
 
Theoremider 6581 The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
 |- 
 _I  Er  _V
 
Theorem0er 6582 The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
 |-  (/)  Er  (/)
 
Theoremeceq1 6583 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
 
Theoremeceq1d 6584 Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  [ A ] C  =  [ B ] C )
 
Theoremeceq2 6585 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )
 
Theoremelecg 6586 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )
 
Theoremelec 6587 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  e.  [ B ] R  <->  B R A )
 
Theoremrelelec 6588 Membership in an equivalence class when  R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( Rel  R  ->  ( A  e.  [ B ] R  <->  B R A ) )
 
Theoremecss 6589 An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  [ A ] R  C_  X )
 
Theoremecdmn0m 6590* A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
 |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
 
Theoremereldm 6591 Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  [ A ] R  =  [ B ] R )   =>    |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )
 
Theoremerth 6592 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A  e.  X )   =>    |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R ) )
 
Theoremerth2 6593 Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R ) )
 
Theoremerthi 6594 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  [ A ] R  =  [ B ] R )
 
Theoremecidsn 6595 An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
 |- 
 [ A ]  _I  =  { A }
 
Theoremqseq1 6596 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C ) )
 
Theoremqseq2 6597 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B ) )
 
Theoremelqsg 6598* Closed form of elqs 6599. (Contributed by Rodolfo Medina, 12-Oct-2010.)
 |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R ) )
 
Theoremelqs 6599* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  B  e.  _V   =>    |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R )
 
Theoremelqsi 6600* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15104
  Copyright terms: Public domain < Previous  Next >