HomeHome Intuitionistic Logic Explorer
Theorem List (p. 66 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6501-6600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-er 6501 Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 6502 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 6521, ersymb 6515, and ertr 6516. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
 C_  R ) )
 
Theoremdfer2 6502* Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z
 ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
 
Definitiondf-ec 6503 Define the  R-coset of  A. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of  A modulo  R when  R is an equivalence relation (i.e. when  Er  R; see dfer2 6502). In this case,  A is a representative (member) of the equivalence class  [ A ] R, which contains all sets that are equivalent to  A. Definition of [Enderton] p. 57 uses the notation  [ A ] (subscript)  R, although we simply follow the brackets by  R since we don't have subscripted expressions. For an alternate definition, see dfec2 6504. (Contributed by NM, 23-Jul-1995.)
 |- 
 [ A ] R  =  ( R " { A } )
 
Theoremdfec2 6504* Alternate definition of  R-coset of  A. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  [ A ] R  =  { y  |  A R y } )
 
Theoremecexg 6505 An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
 |-  ( R  e.  B  ->  [ A ] R  e.  _V )
 
Theoremecexr 6506 An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  [ B ] R  ->  B  e.  _V )
 
Definitiondf-qs 6507* Define quotient set.  R is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
 
Theoremereq1 6508 Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
 
Theoremereq2 6509 Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )
 
Theoremerrel 6510 An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  Rel  R )
 
Theoremerdm 6511 The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  dom  R  =  A )
 
Theoremercl 6512 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  A  e.  X )
 
Theoremersym 6513 An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  B R A )
 
Theoremercl2 6514 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  B  e.  X )
 
Theoremersymb 6515 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  ( A R B  <->  B R A ) )
 
Theoremertr 6516 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  (
 ( A R B  /\  B R C ) 
 ->  A R C ) )
 
Theoremertrd 6517 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremertr2d 6518 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  C R A )
 
Theoremertr3d 6519 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  B R A )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremertr4d 6520 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C R B )   =>    |-  ( ph  ->  A R C )
 
Theoremerref 6521 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A  e.  X )   =>    |-  ( ph  ->  A R A )
 
Theoremercnv 6522 The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  `' R  =  R )
 
Theoremerrn 6523 The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ran  R  =  A )
 
Theoremerssxp 6524 An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  R  C_  ( A  X.  A ) )
 
Theoremerex 6525 An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V )
 )
 
Theoremerexb 6526 An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )
 
Theoremiserd 6527* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ( ph  /\  x R y )  ->  y R x )   &    |-  (
 ( ph  /\  ( x R y  /\  y R z ) ) 
 ->  x R z )   &    |-  ( ph  ->  ( x  e.  A  <->  x R x ) )   =>    |-  ( ph  ->  R  Er  A )
 
Theorembrdifun 6528 Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   =>    |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B 
 <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
 
Theoremswoer 6529* Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   =>    |-  ( ph  ->  R  Er  X )
 
Theoremswoord1 6530* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  ( A  .<  C  <->  B  .<  C ) )
 
Theoremswoord2 6531* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  ( C  .<  A  <->  C  .<  B ) )
 
Theoremeqerlem 6532* Lemma for eqer 6533. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  ( z R w  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
 
Theoremeqer 6533* Equivalence relation involving equality of dependent classes  A
( x ) and  B ( y ). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  R  Er  _V
 
Theoremider 6534 The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
 |- 
 _I  Er  _V
 
Theorem0er 6535 The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
 |-  (/)  Er  (/)
 
Theoremeceq1 6536 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
 
Theoremeceq1d 6537 Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  [ A ] C  =  [ B ] C )
 
Theoremeceq2 6538 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )
 
Theoremelecg 6539 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )
 
Theoremelec 6540 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  e.  [ B ] R  <->  B R A )
 
Theoremrelelec 6541 Membership in an equivalence class when  R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( Rel  R  ->  ( A  e.  [ B ] R  <->  B R A ) )
 
Theoremecss 6542 An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  [ A ] R  C_  X )
 
Theoremecdmn0m 6543* A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
 |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
 
Theoremereldm 6544 Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  [ A ] R  =  [ B ] R )   =>    |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )
 
Theoremerth 6545 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A  e.  X )   =>    |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R ) )
 
Theoremerth2 6546 Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R ) )
 
Theoremerthi 6547 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  [ A ] R  =  [ B ] R )
 
Theoremecidsn 6548 An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
 |- 
 [ A ]  _I  =  { A }
 
Theoremqseq1 6549 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C ) )
 
Theoremqseq2 6550 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B ) )
 
Theoremelqsg 6551* Closed form of elqs 6552. (Contributed by Rodolfo Medina, 12-Oct-2010.)
 |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R ) )
 
Theoremelqs 6552* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  B  e.  _V   =>    |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R )
 
Theoremelqsi 6553* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R )
 
Theoremecelqsg 6554 Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R ) )
 
Theoremecelqsi 6555 Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  R  e.  _V   =>    |-  ( B  e.  A  ->  [ B ] R  e.  ( A /. R ) )
 
Theoremecopqsi 6556 "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
 |-  R  e.  _V   &    |-  S  =  ( ( A  X.  A ) /. R )   =>    |-  ( ( B  e.  A  /\  C  e.  A )  ->  [ <. B ,  C >. ] R  e.  S )
 
Theoremqsexg 6557 A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A /. R )  e.  _V )
 
Theoremqsex 6558 A quotient set exists. (Contributed by NM, 14-Aug-1995.)
 |-  A  e.  _V   =>    |-  ( A /. R )  e.  _V
 
Theoremuniqs 6559 The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
 |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A ) )
 
Theoremqsss 6560 A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  A )   =>    |-  ( ph  ->  ( A /. R )  C_  ~P A )
 
Theoremuniqs2 6561 The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
 |-  ( ph  ->  R  Er  A )   &    |-  ( ph  ->  R  e.  V )   =>    |-  ( ph  ->  U. ( A /. R )  =  A )
 
Theoremsnec 6562 The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  A  e.  _V   =>    |-  { [ A ] R }  =  ( { A } /. R )
 
Theoremecqs 6563 Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
 |-  R  e.  _V   =>    |-  [ A ] R  =  U. ( { A } /. R )
 
Theoremecid 6564 A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  A  e.  _V   =>    |-  [ A ] `'  _E  =  A
 
Theoremecidg 6565 A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.)
 |-  ( A  e.  V  ->  [ A ] `'  _E  =  A )
 
Theoremqsid 6566 A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A /. `'  _E  )  =  A
 
Theoremectocld 6567* Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  S  =  ( B
 /. R )   &    |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 ( ch  /\  x  e.  B )  ->  ph )   =>    |-  (
 ( ch  /\  A  e.  S )  ->  ps )
 
Theoremectocl 6568* Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  S  =  ( B
 /. R )   &    |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  ( x  e.  B  ->  ph )   =>    |-  ( A  e.  S  ->  ps )
 
Theoremelqsn0m 6569* An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
 |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
 
Theoremelqsn0 6570 A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
 |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  B  =/=  (/) )
 
Theoremecelqsdm 6571 Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
 |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) ) 
 ->  B  e.  A )
 
Theoremxpider 6572 A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( A  X.  A )  Er  A
 
Theoremiinerm 6573* The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
 |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  |^|_ x  e.  A  R  Er  B )
 
Theoremriinerm 6574* The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
 |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
 ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B )
 
Theoremerinxp 6575 A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  A )   &    |-  ( ph  ->  B 
 C_  A )   =>    |-  ( ph  ->  ( R  i^i  ( B  X.  B ) )  Er  B )
 
Theoremecinxp 6576 Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
 |-  ( ( ( R
 " A )  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )
 
Theoremqsinxp 6577 Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ( R " A )  C_  A  ->  ( A /. R )  =  ( A /. ( R  i^i  ( A  X.  A ) ) ) )
 
Theoremqsel 6578 If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R )
 
Theoremqliftlem 6579*  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ( ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
 
Theoremqliftrel 6580*  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ph  ->  F  C_  ( ( X /. R )  X.  Y ) )
 
Theoremqliftel 6581* Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ph  ->  ( [ C ] R F D 
 <-> 
 E. x  e.  X  ( C R x  /\  D  =  A )
 ) )
 
Theoremqliftel1 6582* Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ( ph  /\  x  e.  X )  ->  [ x ] R F A )
 
Theoremqliftfun 6583* The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   &    |-  ( x  =  y 
 ->  A  =  B )   =>    |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B )
 ) )
 
Theoremqliftfund 6584* The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   &    |-  ( x  =  y 
 ->  A  =  B )   &    |-  ( ( ph  /\  x R y )  ->  A  =  B )   =>    |-  ( ph  ->  Fun  F )
 
Theoremqliftfuns 6585* The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ph  ->  ( Fun  F  <->  A. y A. z
 ( y R z 
 ->  [_ y  /  x ]_ A  =  [_ z  /  x ]_ A ) ) )
 
Theoremqliftf 6586* The domain and range of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ph  ->  ( Fun  F  <->  F : ( X
 /. R ) --> Y ) )
 
Theoremqliftval 6587* The value of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   &    |-  ( x  =  C  ->  A  =  B )   &    |-  ( ph  ->  Fun  F )   =>    |-  ( ( ph  /\  C  e.  X )  ->  ( F `  [ C ] R )  =  B )
 
Theoremecoptocl 6588* Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
 |-  S  =  ( ( B  X.  C )
 /. R )   &    |-  ( [ <. x ,  y >. ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 ( x  e.  B  /\  y  e.  C )  ->  ph )   =>    |-  ( A  e.  S  ->  ps )
 
Theorem2ecoptocl 6589* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
 |-  S  =  ( ( C  X.  D )
 /. R )   &    |-  ( [ <. x ,  y >. ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  ( [ <. z ,  w >. ] R  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 ( ( x  e.  C  /\  y  e.  D )  /\  (
 z  e.  C  /\  w  e.  D )
 )  ->  ph )   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
 
Theorem3ecoptocl 6590* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
 |-  S  =  ( ( D  X.  D )
 /. R )   &    |-  ( [ <. x ,  y >. ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  ( [ <. z ,  w >. ] R  =  B  ->  ( ps  <->  ch ) )   &    |-  ( [ <. v ,  u >. ] R  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( ( x  e.  D  /\  y  e.  D )  /\  (
 z  e.  D  /\  w  e.  D )  /\  ( v  e.  D  /\  u  e.  D ) )  ->  ph )   =>    |-  (
 ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  th )
 
Theorembrecop 6591* Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( G  X.  G )   &    |-  H  =  ( ( G  X.  G ) /.  .~  )   &    |- 
 .<_  =  { <. x ,  y >.  |  ( ( x  e.  H  /\  y  e.  H )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ] 
 .~  /\  y  =  [ <. v ,  u >. ]  .~  )  /\  ph ) ) }   &    |-  (
 ( ( ( z  e.  G  /\  w  e.  G )  /\  ( A  e.  G  /\  B  e.  G )
 )  /\  ( (
 v  e.  G  /\  u  e.  G )  /\  ( C  e.  G  /\  D  e.  G ) ) )  ->  (
 ( [ <. z ,  w >. ]  .~  =  [ <. A ,  B >. ]  .~  /\  [ <. v ,  u >. ] 
 .~  =  [ <. C ,  D >. ]  .~  )  ->  ( ph  <->  ps ) ) )   =>    |-  ( ( ( A  e.  G  /\  B  e.  G )  /\  ( C  e.  G  /\  D  e.  G )
 )  ->  ( [ <. A ,  B >. ] 
 .~  .<_  [ <. C ,  D >. ]  .~  <->  ps ) )
 
Theoremeroveu 6592* Lemma for eroprf 6594. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   =>    |-  ( ( ph  /\  ( X  e.  J  /\  Y  e.  K )
 )  ->  E! z E. p  e.  A  E. q  e.  B  ( ( X  =  [ p ] R  /\  Y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T ) )
 
Theoremerovlem 6593* Lemma for eroprf 6594. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   &    |-  .+^ 
 =  { <. <. x ,  y >. ,  z >.  | 
 E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) }   =>    |-  ( ph  ->  .+^  =  ( x  e.  J ,  y  e.  K  |->  ( iota
 z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) ) ) )
 
Theoremeroprf 6594* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   &    |-  .+^ 
 =  { <. <. x ,  y >. ,  z >.  | 
 E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) }   &    |-  ( ph  ->  R  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  L  =  ( C
 /. T )   =>    |-  ( ph  ->  .+^  : ( J  X.  K )
 --> L )
 
Theoremeroprf2 6595* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
 |-  J  =  ( A
 /.  .~  )   &    |-  .+^  =  { <.
 <. x ,  y >. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [
 q ]  .~  )  /\  z  =  [
 ( p  .+  q
 ) ]  .~  ) }   &    |-  ( ph  ->  .~  e.  X )   &    |-  ( ph  ->  .~ 
 Er  U )   &    |-  ( ph  ->  A  C_  U )   &    |-  ( ph  ->  .+  :
 ( A  X.  A )
 --> A )   &    |-  ( ( ph  /\  ( ( r  e.  A  /\  s  e.  A )  /\  (
 t  e.  A  /\  u  e.  A )
 ) )  ->  (
 ( r  .~  s  /\  t  .~  u ) 
 ->  ( r  .+  t
 )  .~  ( s  .+  u ) ) )   =>    |-  ( ph  ->  .+^  : ( J  X.  J ) --> J )
 
Theoremecopoveq 6596* This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation 
.~ (specified by the hypothesis) in terms of its operation  F. (Contributed by NM, 16-Aug-1995.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   =>    |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S )
 )  ->  ( <. A ,  B >.  .~  <. C ,  D >.  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
 
Theoremecopovsym 6597* Assuming the operation  F is commutative, show that the relation  .~, specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   =>    |-  ( A  .~  B  ->  B  .~  A )
 
Theoremecopovtrn 6598* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |-  ( ( A  .~  B  /\  B  .~  C )  ->  A  .~  C )
 
Theoremecopover 6599* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |- 
 .~  Er  ( S  X.  S )
 
Theoremecopovsymg 6600* Assuming the operation  F is commutative, show that the relation  .~, specified by the first hypothesis, is symmetric. (Contributed by Jim Kingdon, 1-Sep-2019.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  =  ( y  .+  x ) )   =>    |-  ( A  .~  B  ->  B  .~  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >