| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpider | Unicode version | ||
| Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpider |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4797 |
. 2
| |
| 2 | dmxpid 4913 |
. 2
| |
| 3 | cnvxp 5115 |
. . 3
| |
| 4 | xpidtr 5087 |
. . 3
| |
| 5 | uneq1 3324 |
. . . 4
| |
| 6 | unss2 3348 |
. . . 4
| |
| 7 | unidm 3320 |
. . . . 5
| |
| 8 | eqtr 2224 |
. . . . . 6
| |
| 9 | sseq2 3221 |
. . . . . . 7
| |
| 10 | 9 | biimpd 144 |
. . . . . 6
|
| 11 | 8, 10 | syl 14 |
. . . . 5
|
| 12 | 7, 11 | mpan2 425 |
. . . 4
|
| 13 | 5, 6, 12 | syl2im 38 |
. . 3
|
| 14 | 3, 4, 13 | mp2 16 |
. 2
|
| 15 | df-er 6638 |
. 2
| |
| 16 | 1, 2, 14, 15 | mpbir3an 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-er 6638 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |