| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpider | Unicode version | ||
| Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpider |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4772 |
. 2
| |
| 2 | dmxpid 4887 |
. 2
| |
| 3 | cnvxp 5088 |
. . 3
| |
| 4 | xpidtr 5060 |
. . 3
| |
| 5 | uneq1 3310 |
. . . 4
| |
| 6 | unss2 3334 |
. . . 4
| |
| 7 | unidm 3306 |
. . . . 5
| |
| 8 | eqtr 2214 |
. . . . . 6
| |
| 9 | sseq2 3207 |
. . . . . . 7
| |
| 10 | 9 | biimpd 144 |
. . . . . 6
|
| 11 | 8, 10 | syl 14 |
. . . . 5
|
| 12 | 7, 11 | mpan2 425 |
. . . 4
|
| 13 | 5, 6, 12 | syl2im 38 |
. . 3
|
| 14 | 3, 4, 13 | mp2 16 |
. 2
|
| 15 | df-er 6592 |
. 2
| |
| 16 | 1, 2, 14, 15 | mpbir3an 1181 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-er 6592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |