ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpider Unicode version

Theorem xpider 6608
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
xpider  |-  ( A  X.  A )  Er  A

Proof of Theorem xpider
StepHypRef Expression
1 relxp 4737 . 2  |-  Rel  ( A  X.  A )
2 dmxpid 4850 . 2  |-  dom  ( A  X.  A )  =  A
3 cnvxp 5049 . . 3  |-  `' ( A  X.  A )  =  ( A  X.  A )
4 xpidtr 5021 . . 3  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
5 uneq1 3284 . . . 4  |-  ( `' ( A  X.  A
)  =  ( A  X.  A )  -> 
( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) ) )
6 unss2 3308 . . . 4  |-  ( ( ( A  X.  A
)  o.  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  ( `' ( A  X.  A )  u.  (
( A  X.  A
)  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) ) )
7 unidm 3280 . . . . 5  |-  ( ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A
)
8 eqtr 2195 . . . . . 6  |-  ( ( ( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) )  /\  ( ( A  X.  A )  u.  ( A  X.  A
) )  =  ( A  X.  A ) )  ->  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  =  ( A  X.  A ) )
9 sseq2 3181 . . . . . . 7  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  <-> 
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) ) )
109biimpd 144 . . . . . 6  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
118, 10syl 14 . . . . 5  |-  ( ( ( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) )  /\  ( ( A  X.  A )  u.  ( A  X.  A
) )  =  ( A  X.  A ) )  ->  ( ( `' ( A  X.  A )  u.  (
( A  X.  A
)  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
127, 11mpan2 425 . . . 4  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( ( A  X.  A )  u.  ( A  X.  A
) )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
135, 6, 12syl2im 38 . . 3  |-  ( `' ( A  X.  A
)  =  ( A  X.  A )  -> 
( ( ( A  X.  A )  o.  ( A  X.  A
) )  C_  ( A  X.  A )  -> 
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) ) )
143, 4, 13mp2 16 . 2  |-  ( `' ( A  X.  A
)  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) ) 
C_  ( A  X.  A )
15 df-er 6537 . 2  |-  ( ( A  X.  A )  Er  A  <->  ( Rel  ( A  X.  A
)  /\  dom  ( A  X.  A )  =  A  /\  ( `' ( A  X.  A
)  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) ) 
C_  ( A  X.  A ) ) )
161, 2, 14, 15mpbir3an 1179 1  |-  ( A  X.  A )  Er  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    u. cun 3129    C_ wss 3131    X. cxp 4626   `'ccnv 4627   dom cdm 4628    o. ccom 4632   Rel wrel 4633    Er wer 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-er 6537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator