ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpider Unicode version

Theorem xpider 6660
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
xpider  |-  ( A  X.  A )  Er  A

Proof of Theorem xpider
StepHypRef Expression
1 relxp 4768 . 2  |-  Rel  ( A  X.  A )
2 dmxpid 4883 . 2  |-  dom  ( A  X.  A )  =  A
3 cnvxp 5084 . . 3  |-  `' ( A  X.  A )  =  ( A  X.  A )
4 xpidtr 5056 . . 3  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
5 uneq1 3306 . . . 4  |-  ( `' ( A  X.  A
)  =  ( A  X.  A )  -> 
( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) ) )
6 unss2 3330 . . . 4  |-  ( ( ( A  X.  A
)  o.  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  ( `' ( A  X.  A )  u.  (
( A  X.  A
)  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) ) )
7 unidm 3302 . . . . 5  |-  ( ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A
)
8 eqtr 2211 . . . . . 6  |-  ( ( ( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) )  /\  ( ( A  X.  A )  u.  ( A  X.  A
) )  =  ( A  X.  A ) )  ->  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  =  ( A  X.  A ) )
9 sseq2 3203 . . . . . . 7  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  <-> 
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) ) )
109biimpd 144 . . . . . 6  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( A  X.  A )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
118, 10syl 14 . . . . 5  |-  ( ( ( `' ( A  X.  A )  u.  ( A  X.  A
) )  =  ( ( A  X.  A
)  u.  ( A  X.  A ) )  /\  ( ( A  X.  A )  u.  ( A  X.  A
) )  =  ( A  X.  A ) )  ->  ( ( `' ( A  X.  A )  u.  (
( A  X.  A
)  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
127, 11mpan2 425 . . . 4  |-  ( ( `' ( A  X.  A )  u.  ( A  X.  A ) )  =  ( ( A  X.  A )  u.  ( A  X.  A
) )  ->  (
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( `' ( A  X.  A
)  u.  ( A  X.  A ) )  ->  ( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A
) ) )  C_  ( A  X.  A
) ) )
135, 6, 12syl2im 38 . . 3  |-  ( `' ( A  X.  A
)  =  ( A  X.  A )  -> 
( ( ( A  X.  A )  o.  ( A  X.  A
) )  C_  ( A  X.  A )  -> 
( `' ( A  X.  A )  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) )  C_  ( A  X.  A ) ) )
143, 4, 13mp2 16 . 2  |-  ( `' ( A  X.  A
)  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) ) 
C_  ( A  X.  A )
15 df-er 6587 . 2  |-  ( ( A  X.  A )  Er  A  <->  ( Rel  ( A  X.  A
)  /\  dom  ( A  X.  A )  =  A  /\  ( `' ( A  X.  A
)  u.  ( ( A  X.  A )  o.  ( A  X.  A ) ) ) 
C_  ( A  X.  A ) ) )
161, 2, 14, 15mpbir3an 1181 1  |-  ( A  X.  A )  Er  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    u. cun 3151    C_ wss 3153    X. cxp 4657   `'ccnv 4658   dom cdm 4659    o. ccom 4663   Rel wrel 4664    Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-er 6587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator