ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errel Unicode version

Theorem errel 6689
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel  |-  ( R  Er  A  ->  Rel  R )

Proof of Theorem errel
StepHypRef Expression
1 df-er 6680 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp1bi 1036 1  |-  ( R  Er  A  ->  Rel  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    u. cun 3195    C_ wss 3197   `'ccnv 4718   dom cdm 4719    o. ccom 4723   Rel wrel 4724    Er wer 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-er 6680
This theorem is referenced by:  ercl  6691  ersym  6692  ertr  6695  ercnv  6701  erssxp  6703  erth  6726  iinerm  6754  eqg0el  13766
  Copyright terms: Public domain W3C validator