Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > errel | Unicode version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6497 | . 2 | |
2 | 1 | simp1bi 1002 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cun 3113 wss 3115 ccnv 4602 cdm 4603 ccom 4607 wrel 4608 wer 6494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-er 6497 |
This theorem is referenced by: ercl 6508 ersym 6509 ertr 6512 ercnv 6518 erssxp 6520 erth 6541 iinerm 6569 |
Copyright terms: Public domain | W3C validator |