Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > errel | Unicode version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6513 | . 2 | |
2 | 1 | simp1bi 1007 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cun 3119 wss 3121 ccnv 4610 cdm 4611 ccom 4615 wrel 4616 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-er 6513 |
This theorem is referenced by: ercl 6524 ersym 6525 ertr 6528 ercnv 6534 erssxp 6536 erth 6557 iinerm 6585 |
Copyright terms: Public domain | W3C validator |