ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errel Unicode version

Theorem errel 6610
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel  |-  ( R  Er  A  ->  Rel  R )

Proof of Theorem errel
StepHypRef Expression
1 df-er 6601 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
21simp1bi 1014 1  |-  ( R  Er  A  ->  Rel  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3155    C_ wss 3157   `'ccnv 4663   dom cdm 4664    o. ccom 4668   Rel wrel 4669    Er wer 6598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 982  df-er 6601
This theorem is referenced by:  ercl  6612  ersym  6613  ertr  6616  ercnv  6622  erssxp  6624  erth  6647  iinerm  6675  eqg0el  13435
  Copyright terms: Public domain W3C validator