ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frforeq3 Unicode version

Theorem frforeq3 4395
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
Assertion
Ref Expression
frforeq3  |-  ( S  =  T  ->  (FrFor  R A S  <-> FrFor  R A T ) )

Proof of Theorem frforeq3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2269 . . . . . . 7  |-  ( S  =  T  ->  (
y  e.  S  <->  y  e.  T ) )
21imbi2d 230 . . . . . 6  |-  ( S  =  T  ->  (
( y R x  ->  y  e.  S
)  <->  ( y R x  ->  y  e.  T ) ) )
32ralbidv 2506 . . . . 5  |-  ( S  =  T  ->  ( A. y  e.  A  ( y R x  ->  y  e.  S
)  <->  A. y  e.  A  ( y R x  ->  y  e.  T
) ) )
4 eleq2 2269 . . . . 5  |-  ( S  =  T  ->  (
x  e.  S  <->  x  e.  T ) )
53, 4imbi12d 234 . . . 4  |-  ( S  =  T  ->  (
( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  <->  ( A. y  e.  A  (
y R x  -> 
y  e.  T )  ->  x  e.  T
) ) )
65ralbidv 2506 . . 3  |-  ( S  =  T  ->  ( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S
)  ->  x  e.  S )  <->  A. x  e.  A  ( A. y  e.  A  (
y R x  -> 
y  e.  T )  ->  x  e.  T
) ) )
7 sseq2 3217 . . 3  |-  ( S  =  T  ->  ( A  C_  S  <->  A  C_  T
) )
86, 7imbi12d 234 . 2  |-  ( S  =  T  ->  (
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S )  <->  ( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  T
)  ->  x  e.  T )  ->  A  C_  T ) ) )
9 df-frfor 4379 . 2  |-  (FrFor  R A S  <->  ( A. x  e.  A  ( A. y  e.  A  (
y R x  -> 
y  e.  S )  ->  x  e.  S
)  ->  A  C_  S
) )
10 df-frfor 4379 . 2  |-  (FrFor  R A T  <->  ( A. x  e.  A  ( A. y  e.  A  (
y R x  -> 
y  e.  T )  ->  x  e.  T
)  ->  A  C_  T
) )
118, 9, 103bitr4g 223 1  |-  ( S  =  T  ->  (FrFor  R A S  <-> FrFor  R A T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   class class class wbr 4045  FrFor wfrfor 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489  df-in 3172  df-ss 3179  df-frfor 4379
This theorem is referenced by:  frind  4400
  Copyright terms: Public domain W3C validator