ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frforeq3 Unicode version

Theorem frforeq3 4349
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
Assertion
Ref Expression
frforeq3  |-  ( S  =  T  ->  (FrFor  R A S  <-> FrFor  R A T ) )

Proof of Theorem frforeq3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2241 . . . . . . 7  |-  ( S  =  T  ->  (
y  e.  S  <->  y  e.  T ) )
21imbi2d 230 . . . . . 6  |-  ( S  =  T  ->  (
( y R x  ->  y  e.  S
)  <->  ( y R x  ->  y  e.  T ) ) )
32ralbidv 2477 . . . . 5  |-  ( S  =  T  ->  ( A. y  e.  A  ( y R x  ->  y  e.  S
)  <->  A. y  e.  A  ( y R x  ->  y  e.  T
) ) )
4 eleq2 2241 . . . . 5  |-  ( S  =  T  ->  (
x  e.  S  <->  x  e.  T ) )
53, 4imbi12d 234 . . . 4  |-  ( S  =  T  ->  (
( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  <->  ( A. y  e.  A  (
y R x  -> 
y  e.  T )  ->  x  e.  T
) ) )
65ralbidv 2477 . . 3  |-  ( S  =  T  ->  ( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S
)  ->  x  e.  S )  <->  A. x  e.  A  ( A. y  e.  A  (
y R x  -> 
y  e.  T )  ->  x  e.  T
) ) )
7 sseq2 3181 . . 3  |-  ( S  =  T  ->  ( A  C_  S  <->  A  C_  T
) )
86, 7imbi12d 234 . 2  |-  ( S  =  T  ->  (
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  S )  ->  x  e.  S )  ->  A  C_  S )  <->  ( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  T
)  ->  x  e.  T )  ->  A  C_  T ) ) )
9 df-frfor 4333 . 2  |-  (FrFor  R A S  <->  ( A. x  e.  A  ( A. y  e.  A  (
y R x  -> 
y  e.  S )  ->  x  e.  S
)  ->  A  C_  S
) )
10 df-frfor 4333 . 2  |-  (FrFor  R A T  <->  ( A. x  e.  A  ( A. y  e.  A  (
y R x  -> 
y  e.  T )  ->  x  e.  T
)  ->  A  C_  T
) )
118, 9, 103bitr4g 223 1  |-  ( S  =  T  ->  (FrFor  R A S  <-> FrFor  R A T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   class class class wbr 4005  FrFor wfrfor 4329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-ral 2460  df-in 3137  df-ss 3144  df-frfor 4333
This theorem is referenced by:  frind  4354
  Copyright terms: Public domain W3C validator