ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrfor Unicode version

Theorem nffrfor 4326
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffrfor.r  |-  F/_ x R
nffrfor.a  |-  F/_ x A
nffrfor.s  |-  F/_ x S
Assertion
Ref Expression
nffrfor  |-  F/ xFrFor  R A S

Proof of Theorem nffrfor
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frfor 4309 . 2  |-  (FrFor  R A S  <->  ( A. u  e.  A  ( A. v  e.  A  (
v R u  -> 
v  e.  S )  ->  u  e.  S
)  ->  A  C_  S
) )
2 nffrfor.a . . . 4  |-  F/_ x A
3 nfcv 2308 . . . . . . . 8  |-  F/_ x
v
4 nffrfor.r . . . . . . . 8  |-  F/_ x R
5 nfcv 2308 . . . . . . . 8  |-  F/_ x u
63, 4, 5nfbr 4028 . . . . . . 7  |-  F/ x  v R u
7 nffrfor.s . . . . . . . 8  |-  F/_ x S
87nfcri 2302 . . . . . . 7  |-  F/ x  v  e.  S
96, 8nfim 1560 . . . . . 6  |-  F/ x
( v R u  ->  v  e.  S
)
102, 9nfralxy 2504 . . . . 5  |-  F/ x A. v  e.  A  ( v R u  ->  v  e.  S
)
117nfcri 2302 . . . . 5  |-  F/ x  u  e.  S
1210, 11nfim 1560 . . . 4  |-  F/ x
( A. v  e.  A  ( v R u  ->  v  e.  S )  ->  u  e.  S )
132, 12nfralxy 2504 . . 3  |-  F/ x A. u  e.  A  ( A. v  e.  A  ( v R u  ->  v  e.  S
)  ->  u  e.  S )
142, 7nfss 3135 . . 3  |-  F/ x  A  C_  S
1513, 14nfim 1560 . 2  |-  F/ x
( A. u  e.  A  ( A. v  e.  A  ( v R u  ->  v  e.  S )  ->  u  e.  S )  ->  A  C_  S )
161, 15nfxfr 1462 1  |-  F/ xFrFor  R A S
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1448    e. wcel 2136   F/_wnfc 2295   A.wral 2444    C_ wss 3116   class class class wbr 3982  FrFor wfrfor 4305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-frfor 4309
This theorem is referenced by:  nffr  4327
  Copyright terms: Public domain W3C validator