ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrfor Unicode version

Theorem nffrfor 4394
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffrfor.r  |-  F/_ x R
nffrfor.a  |-  F/_ x A
nffrfor.s  |-  F/_ x S
Assertion
Ref Expression
nffrfor  |-  F/ xFrFor  R A S

Proof of Theorem nffrfor
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frfor 4377 . 2  |-  (FrFor  R A S  <->  ( A. u  e.  A  ( A. v  e.  A  (
v R u  -> 
v  e.  S )  ->  u  e.  S
)  ->  A  C_  S
) )
2 nffrfor.a . . . 4  |-  F/_ x A
3 nfcv 2347 . . . . . . . 8  |-  F/_ x
v
4 nffrfor.r . . . . . . . 8  |-  F/_ x R
5 nfcv 2347 . . . . . . . 8  |-  F/_ x u
63, 4, 5nfbr 4089 . . . . . . 7  |-  F/ x  v R u
7 nffrfor.s . . . . . . . 8  |-  F/_ x S
87nfcri 2341 . . . . . . 7  |-  F/ x  v  e.  S
96, 8nfim 1594 . . . . . 6  |-  F/ x
( v R u  ->  v  e.  S
)
102, 9nfralxy 2543 . . . . 5  |-  F/ x A. v  e.  A  ( v R u  ->  v  e.  S
)
117nfcri 2341 . . . . 5  |-  F/ x  u  e.  S
1210, 11nfim 1594 . . . 4  |-  F/ x
( A. v  e.  A  ( v R u  ->  v  e.  S )  ->  u  e.  S )
132, 12nfralxy 2543 . . 3  |-  F/ x A. u  e.  A  ( A. v  e.  A  ( v R u  ->  v  e.  S
)  ->  u  e.  S )
142, 7nfss 3185 . . 3  |-  F/ x  A  C_  S
1513, 14nfim 1594 . 2  |-  F/ x
( A. u  e.  A  ( A. v  e.  A  ( v R u  ->  v  e.  S )  ->  u  e.  S )  ->  A  C_  S )
161, 15nfxfr 1496 1  |-  F/ xFrFor  R A S
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1482    e. wcel 2175   F/_wnfc 2334   A.wral 2483    C_ wss 3165   class class class wbr 4043  FrFor wfrfor 4373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-frfor 4377
This theorem is referenced by:  nffr  4395
  Copyright terms: Public domain W3C validator