Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frforeq1 | Unicode version |
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
Ref | Expression |
---|---|
frforeq1 | FrFor FrFor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3991 | . . . . . . 7 | |
2 | 1 | imbi1d 230 | . . . . . 6 |
3 | 2 | ralbidv 2470 | . . . . 5 |
4 | 3 | imbi1d 230 | . . . 4 |
5 | 4 | ralbidv 2470 | . . 3 |
6 | 5 | imbi1d 230 | . 2 |
7 | df-frfor 4316 | . 2 FrFor | |
8 | df-frfor 4316 | . 2 FrFor | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 FrFor FrFor |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 wral 2448 wss 3121 class class class wbr 3989 FrFor wfrfor 4312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cleq 2163 df-clel 2166 df-ral 2453 df-br 3990 df-frfor 4316 |
This theorem is referenced by: freq1 4329 |
Copyright terms: Public domain | W3C validator |