Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frforeq1 | Unicode version |
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
Ref | Expression |
---|---|
frforeq1 | FrFor FrFor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3984 | . . . . . . 7 | |
2 | 1 | imbi1d 230 | . . . . . 6 |
3 | 2 | ralbidv 2466 | . . . . 5 |
4 | 3 | imbi1d 230 | . . . 4 |
5 | 4 | ralbidv 2466 | . . 3 |
6 | 5 | imbi1d 230 | . 2 |
7 | df-frfor 4309 | . 2 FrFor | |
8 | df-frfor 4309 | . 2 FrFor | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 FrFor FrFor |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 wral 2444 wss 3116 class class class wbr 3982 FrFor wfrfor 4305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-cleq 2158 df-clel 2161 df-ral 2449 df-br 3983 df-frfor 4309 |
This theorem is referenced by: freq1 4322 |
Copyright terms: Public domain | W3C validator |