| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frforeq1 | Unicode version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| frforeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 4046 |
. . . . . . 7
| |
| 2 | 1 | imbi1d 231 |
. . . . . 6
|
| 3 | 2 | ralbidv 2506 |
. . . . 5
|
| 4 | 3 | imbi1d 231 |
. . . 4
|
| 5 | 4 | ralbidv 2506 |
. . 3
|
| 6 | 5 | imbi1d 231 |
. 2
|
| 7 | df-frfor 4378 |
. 2
| |
| 8 | df-frfor 4378 |
. 2
| |
| 9 | 6, 7, 8 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 df-ral 2489 df-br 4045 df-frfor 4378 |
| This theorem is referenced by: freq1 4391 |
| Copyright terms: Public domain | W3C validator |