ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frforeq2 Unicode version

Theorem frforeq2 4172
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
Assertion
Ref Expression
frforeq2  |-  ( A  =  B  ->  (FrFor  R A T  <-> FrFor  R B T ) )

Proof of Theorem frforeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2562 . . . . 5  |-  ( A  =  B  ->  ( A. y  e.  A  ( y R x  ->  y  e.  T
)  <->  A. y  e.  B  ( y R x  ->  y  e.  T
) ) )
21imbi1d 229 . . . 4  |-  ( A  =  B  ->  (
( A. y  e.  A  ( y R x  ->  y  e.  T )  ->  x  e.  T )  <->  ( A. y  e.  B  (
y R x  -> 
y  e.  T )  ->  x  e.  T
) ) )
32raleqbi1dv 2570 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  T
)  ->  x  e.  T )  <->  A. x  e.  B  ( A. y  e.  B  (
y R x  -> 
y  e.  T )  ->  x  e.  T
) ) )
4 sseq1 3047 . . 3  |-  ( A  =  B  ->  ( A  C_  T  <->  B  C_  T
) )
53, 4imbi12d 232 . 2  |-  ( A  =  B  ->  (
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  T )  ->  x  e.  T )  ->  A  C_  T )  <->  ( A. x  e.  B  ( A. y  e.  B  ( y R x  ->  y  e.  T
)  ->  x  e.  T )  ->  B  C_  T ) ) )
6 df-frfor 4158 . 2  |-  (FrFor  R A T  <->  ( A. x  e.  A  ( A. y  e.  A  (
y R x  -> 
y  e.  T )  ->  x  e.  T
)  ->  A  C_  T
) )
7 df-frfor 4158 . 2  |-  (FrFor  R B T  <->  ( A. x  e.  B  ( A. y  e.  B  (
y R x  -> 
y  e.  T )  ->  x  e.  T
)  ->  B  C_  T
) )
85, 6, 73bitr4g 221 1  |-  ( A  =  B  ->  (FrFor  R A T  <-> FrFor  R B T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289    e. wcel 1438   A.wral 2359    C_ wss 2999   class class class wbr 3845  FrFor wfrfor 4154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-in 3005  df-ss 3012  df-frfor 4158
This theorem is referenced by:  freq2  4173
  Copyright terms: Public domain W3C validator