ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-op Unicode version

Definition df-op 3652
Description: Definition of an ordered pair, equivalent to Kuratowski's definition  { { A } ,  { A ,  B } } when the arguments are sets. Since the behavior of Kuratowski definition is not very useful for proper classes, we define it to be empty in this case (see opprc1 3855 and opprc2 3856). For Kuratowski's actual definition when the arguments are sets, see dfop 3832.

Definition 9.1 of [Quine] p. 58 defines an ordered pair unconditionally as  <. A ,  B >.  =  { { A } ,  { A ,  B } }, which has different behavior from our df-op 3652 when the arguments are proper classes. Ordinarily this difference is not important, since neither definition is meaningful in that case. Our df-op 3652 was chosen because it often makes proofs shorter by eliminating unnecessary sethood hypotheses.

There are other ways to define ordered pairs. The basic requirement is that two ordered pairs are equal iff their respective members are equal. In 1914 Norbert Wiener gave the first successful definition  <. A ,  B >.2  =  { { { A } ,  (/) } ,  { { B } } }. This was simplified by Kazimierz Kuratowski in 1921 to our present definition. An even simpler definition is  <. A ,  B >.3  =  { A ,  { A ,  B } }, but it requires the Axiom of Regularity for its justification and is not commonly used. Finally, an ordered pair of real numbers can be represented by a complex number. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)

Assertion
Ref Expression
df-op  |-  <. A ,  B >.  =  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
Distinct variable groups:    x, A    x, B

Detailed syntax breakdown of Definition df-op
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2cop 3646 . 2  class  <. A ,  B >.
4 cvv 2776 . . . . 5  class  _V
51, 4wcel 2178 . . . 4  wff  A  e. 
_V
62, 4wcel 2178 . . . 4  wff  B  e. 
_V
7 vx . . . . . 6  setvar  x
87cv 1372 . . . . 5  class  x
91csn 3643 . . . . . 6  class  { A }
101, 2cpr 3644 . . . . . 6  class  { A ,  B }
119, 10cpr 3644 . . . . 5  class  { { A } ,  { A ,  B } }
128, 11wcel 2178 . . . 4  wff  x  e. 
{ { A } ,  { A ,  B } }
135, 6, 12w3a 981 . . 3  wff  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } )
1413, 7cab 2193 . 2  class  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
153, 14wceq 1373 1  wff  <. A ,  B >.  =  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
Colors of variables: wff set class
This definition is referenced by:  dfopg  3831  opeq1  3833  opeq2  3834  nfop  3849  opprc  3854  oprcl  3857  opm  4296
  Copyright terms: Public domain W3C validator